

<image>

<section-header>Reflex Agents• Reflex agents:
 • Choose action based on current percept (and
maybe memory)
 • May have memory or a model of the world's
 current state
 • Do not consider the future consequences of
their actions
 • Consider how the world IS
 • Can a reflex agent be rational?Image: Construction of the world is
 Can a reflex agent be rational?

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><section-header>

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Optimality Tree search: A* is optimal if heuristic is admissible UCS is a special case (h = 0) Graph search: A* optimal if heuristic is consistent UCS optimal (h = 0 is consistent) Consistency implies admissibility In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

