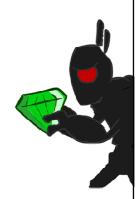
CS 188: Artificial Intelligence

Constraint Satisfaction Problems



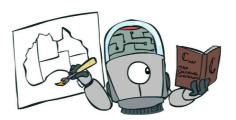
Dan Klein, Pieter Abbeel University of California, Berkeley

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms



Example: Map Coloring

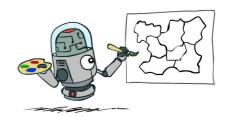
- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}



Map coloring examples: Stuart Russell

Example: N-Queens

Formulation 1:

■ Variables: X_{ij} ■ Domains: $\{0,1\}$

Constraints



$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

Formulation 2:

lacktriangle Variables: Q_k

• Domains: $\{1, 2, 3, \dots N\}$

Constraints:

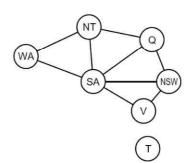
Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$

. . .

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



[demo: n-queens]

Example: Cryptarithmetic

Variables:

$$F T U W R O X_1 X_2 X_3$$

Domains:

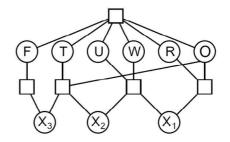
$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Constraints:

$$\mathsf{alldiff}(F,T,U,W,R,O)$$

$$O + O = R + 10 \cdot X_1$$

. . .



Example: Stuart Russell

Example: Sudoku



- Variables:
 - Each (open) square
- Domains:
 - **1**,2,...,9
- Constraints:

9-way alldiff for each column

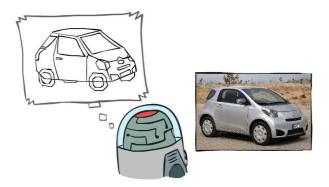
9-way alldiff for each row

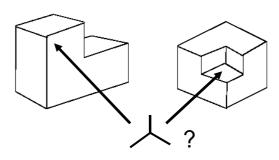
9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an Al computation posed as a CSP





- Approach:
 - Each intersection is a variable
 - Adjacent intersections impose constraints on each other
 - Solutions are physically realizable 3D interpretations

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq green$$

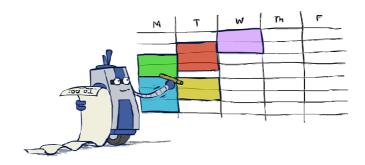
Binary constraints involve pairs of variables, e.g.:

$$SA \neq WA$$

- Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

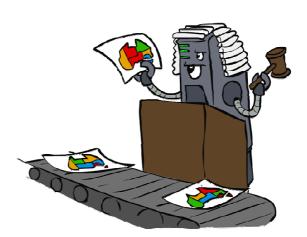


Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it



Search Methods

What would BFS do?

What would DFS do?

WA SA NSW

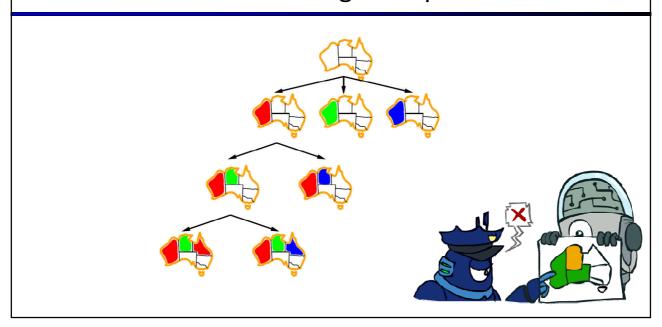
What problems does naïve search have?

[demo: dfs]

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for n ≈ 25

Backtracking Example



Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp)

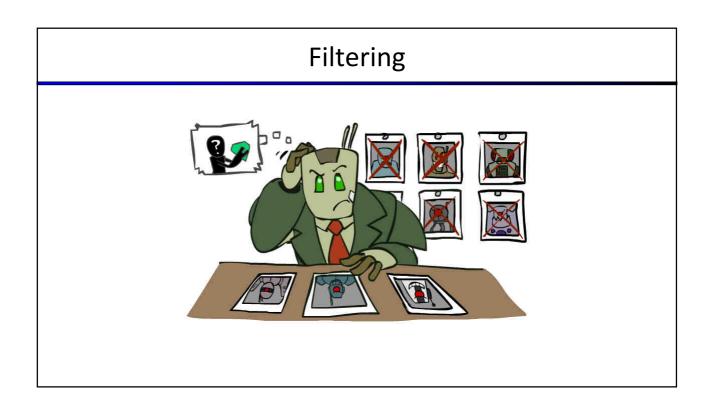
function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

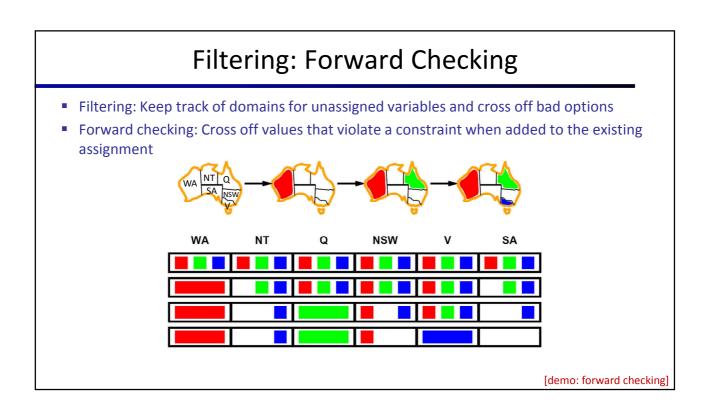
- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Code: Russell and Norvig

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?





Filtering: Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation method reason from constraint to constraint

Consistency of A Single Arc

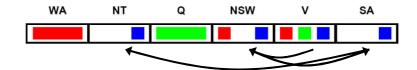
An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

Delete from the tail!

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:



- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

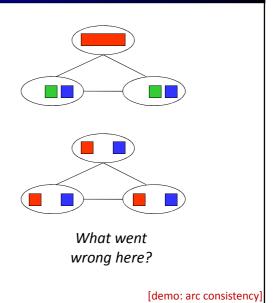
```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then for each X_k in \text{NEIGHBORS}[X_i] do add (X_k, X_i) to queue function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in \text{DOMAIN}[X_i] do if no value y in \text{DOMAIN}[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j then delete x from \text{DOMAIN}[X_i]; removed \leftarrow true return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problems is NP-hard why?

Code: Russell and Norvig

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!



Ordering

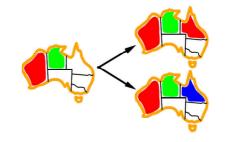
Ordering: Minimum Remaining Values

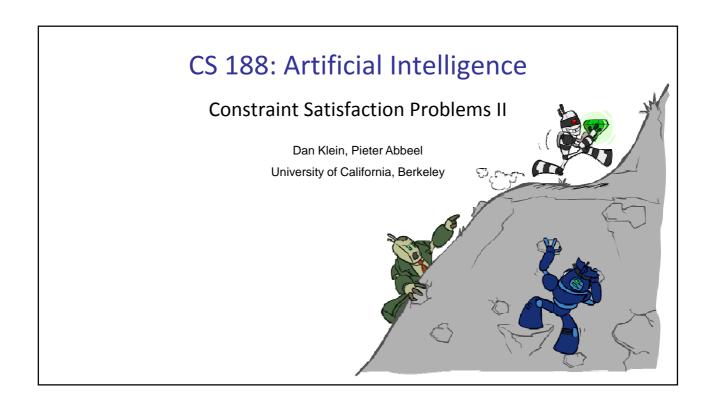
- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible





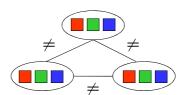
Today

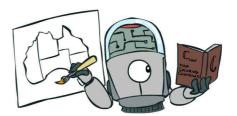
- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

Here: find any solutionAlso: find all, find best, etc.





Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp\})

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow \text{Recursive-Backtracking}(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

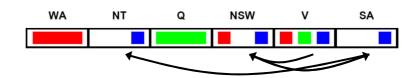
Code: Russell and Norvig

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard
- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are simultaneously consistent:

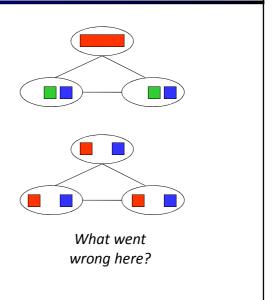


- Arc consistency detects failure earlier than forward checking
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

Remember: Delete from the tail!

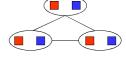
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!



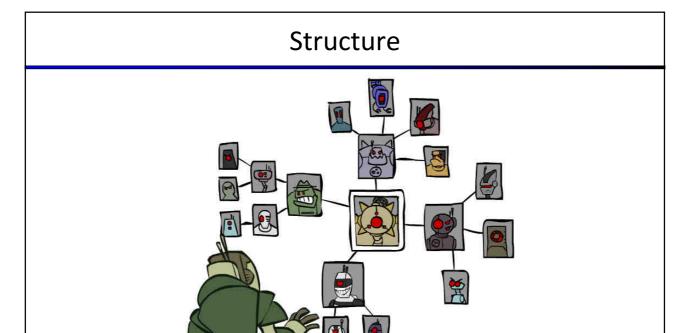
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.



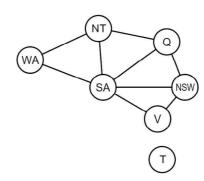
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ..
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

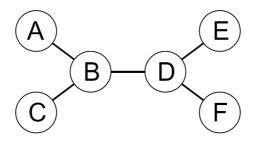


Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec



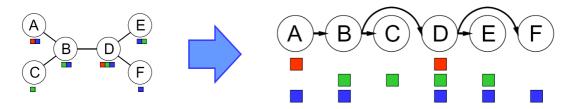
Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children



- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

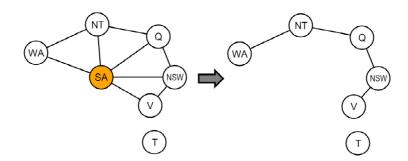
- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

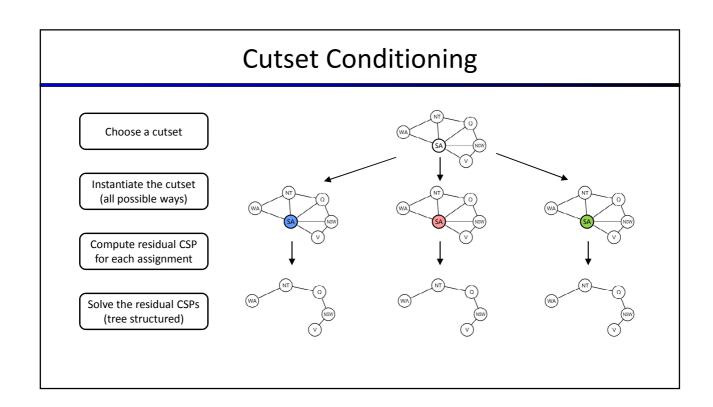
Improving Structure



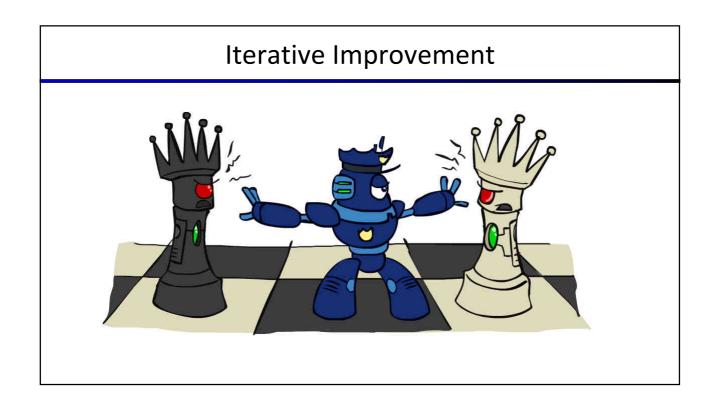
Nearly Tree-Structured CSPs



- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c



Tree Decomposition* Idea: create a tree-structured graph of mega-variables NT Each mega-variable encodes part of the original CSP (WA Subproblems overlap to ensure consistent solutions M1 M2 МЗ M4 $\{(WA=r,SA=g,NT=b),$ $\{(NT=r,SA=g,Q=b),$ Agree: (M1,M2) ∈ (NT=b,SA=g,Q=r), (WA=b,SA=r,NT=g), $\big\{ \big((\mathsf{WA} = \mathsf{g}, \mathsf{SA} = \mathsf{g}, \mathsf{NT} = \mathsf{g}), \, (\mathsf{NT} = \mathsf{g}, \mathsf{SA} = \mathsf{g}, \mathsf{Q} = \mathsf{g}) \big), \quad \ldots \big\}$

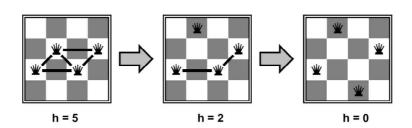


Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

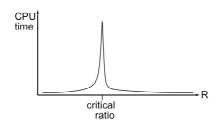


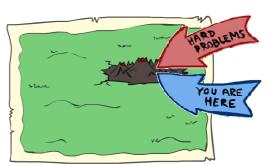
- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[demos: iterative n-queens, map coloring]

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio
 - $R = \frac{\text{number of constraints}}{\text{number of variables}}$



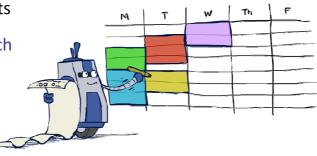


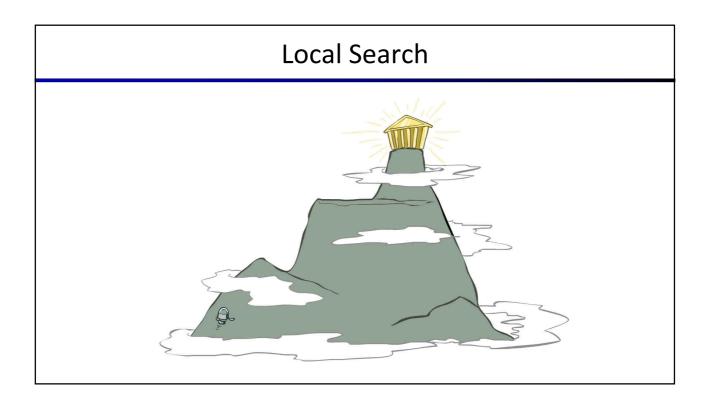
Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments

Goal test defined by constraints

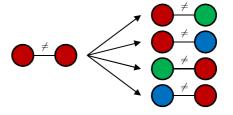
- Basic solution: backtracking search
- Speed-ups:
 - Ordering
 - Filtering
 - Structure
- Iterative min-conflicts is often effective in practice





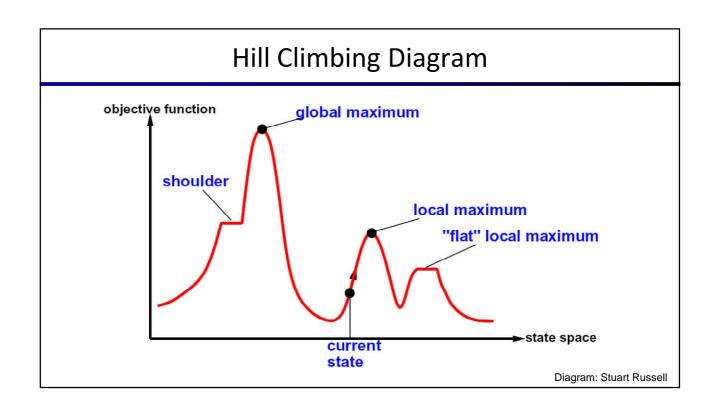
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes



Generally much faster and more memory efficient (but incomplete and suboptimal)

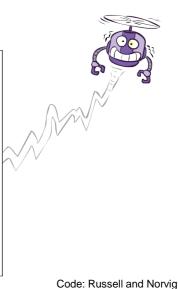
Simple, general idea: Start wherever Repeat: move to the best neighboring state If no neighbors better than current, quit What's bad about this approach? Complete? Optimal? What's good about it?



Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

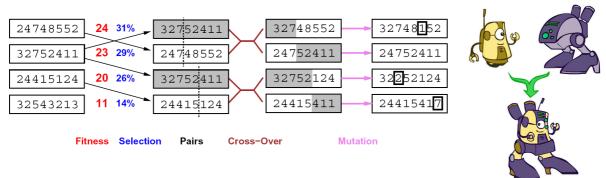
```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps  current \leftarrow \text{MAKE-NODE}(\text{INITIAL-STATE}[problem])  for t \leftarrow 1 to \infty do  T \leftarrow schedule[t]  if T = 0 then return current next \leftarrow a randomly selected successor of current  \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]  if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```



Simulated Annealing

- Theoretical guarantee:
 - ullet Stationary distribution: $p(x) \propto e^{rac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

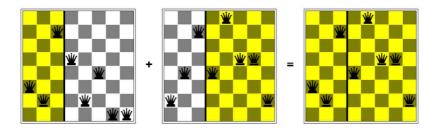
Genetic Algorithms



- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: Stuart Russell

Example: N-Queens



- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?