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CS 188: Artificial Intelligence

Adversarial Search

Dan Klein, Pieter Abbeel

University of California, Berkeley

Game Playing State-of-the-Art

� Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

� Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

� Go: Human champions are now starting to be 
challenged by machines, though the best humans 
still beat the best machines. In go, b > 300!  Classic 
programs use pattern knowledge bases, but big 
recent advances use Monte Carlo (randomized) 
expansion methods.

� Pacman
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Behavior from Computation

[demo: mystery pacman]

Adversarial Games
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Types of Games

� Many different kinds of games!

� Axes:

� Deterministic or stochastic?

� One, two, or more players?

� Zero sum?

� Perfect information (can you see the state)?

� Want algorithms for calculating a strategy (policy) which recommends a 

move from each state

Deterministic Games

� Many possible formalizations, one is:

� States: S (start at s0)

� Players: P={1...N} (usually take turns)

� Actions: A (may depend on player / state)

� Transition Function: SxA → S

� Terminal Test: S → {t,f}

� Terminal Utilities: SxP → R

� Solution for a player is a policy: S → A
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Zero-Sum Games

� Zero-Sum Games

� Agents have opposite utilities (values on 

outcomes)

� Lets us think of a single value that one 

maximizes and the other minimizes

� Adversarial, pure competition

� General Games

� Agents have independent utilities (values on 

outcomes)

� Cooperation, indifference, competition, and 

more are all possible

� More later on non-zero-sum games

Adversarial Search
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Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state: 

The best achievable 

outcome (utility) 

from that state
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Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:
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Tic-Tac-Toe Game Tree

Tic-Tac-Toe Tree: Stuart Russell

Adversarial Search (Minimax)

� Deterministic, zero-sum games:

� Tic-tac-toe, chess, checkers

� One player maximizes result

� The other minimizes result

� Minimax search:

� A state-space search tree

� Players alternate turns

� Compute each node’s minimax value: 

the best achievable utility against a 

rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:

part of the game 

Minimax values:

computed recursively
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Minimax Implementation

def min-value(state):

initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))

return v

def max-value(state):

initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))

return v

Minimax Implementation (Dispatch)

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is MIN: return min-value(state)

def min-value(state):

initialize v = +∞
for each successor of state:

v = min(v, value(successor))

return v

def max-value(state):

initialize v = -∞
for each successor of state:

v = max(v, value(successor))

return v
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Minimax Example

12 8 5 23 2 144 6

Minimax Efficiency

� How efficient is minimax?

� Just like (exhaustive) DFS

� Time: O(bm)

� Space: O(bm)

� Example: For chess, b ≈ 35, m ≈ 100

� Exact solution is completely infeasible

� But, do we need to explore the whole 
tree?
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Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

[demo: min vs exp]

Resource Limits
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Resource Limits

� Problem: In realistic games, cannot search to leaves!

� Solution: Depth-limited search
� Instead, search only to a limited depth in the tree

� Replace terminal utilities with an evaluation function for 
non-terminal positions

� Example:
� Suppose we have 100 seconds, can explore 10K nodes / sec

� So can check 1M nodes per move

� α-β reaches about depth 8 – decent chess program

� Guarantee of optimal play is gone

� More plies makes a BIG difference

� Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

� Evaluation functions are always 

imperfect

� The deeper in the tree the 

evaluation function is buried, the 

less the quality of the evaluation 

function matters

� An important example of the 

tradeoff between complexity of 

features and complexity of 

computation

[demo: depth limited]
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Evaluation Functions

Evaluation Functions

� Evaluation functions score non-terminals in depth-limited search

� Ideal function: returns the actual minimax value of the position

� In practice: typically weighted linear sum of features:

� e.g.  f1(s) = (num white queens – num black queens), etc.

Examples: Stuart Russell
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Evaluation for Pacman

[DEMO: thrashing, smart ghosts]

Why Pacman Starves

� A danger of replanning agents!

� He knows his score will go up by eating the dot now (west, east)

� He knows his score will go up just as much by eating the dot later (east, west)

� There are no point-scoring opportunities after eating the dot (within the horizon, two here)

� Therefore, waiting seems just as good as eating: he may go east, then back west in the next 

round of replanning!
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Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6
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Minimax Pruning

12 8 5 23 2 14

Alpha-Beta Pruning

� General configuration (MIN version)

� We’re computing the MIN-VALUE at some node n

� We’re looping over n’s children

� n’s estimate of the childrens’ min is dropping

� Who cares about n’s value?  MAX

� Let a be the best value that MAX can get at any choice 

point along the current path from the root

� If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 

enough that it won’t be played)

� MAX version is symmetric

MAX

MIN

MAX

MIN

a

n
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Alpha-Beta Implementation

def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))

if v ≤ α return v

β = min(β, v)

return v

def max-value(state, α, β):

initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))

if v ≥ β return v

α = max(α, v)

return v

α: MAX’s best option on path to root

β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

� This pruning has no effect on minimax value computed for the root!

� Values of intermediate nodes might be wrong
� Important: children of the root may have the wrong value

� So the most naïve version won’t let you do action selection

� Good child ordering improves effectiveness of pruning

� With “perfect ordering”:
� Time complexity drops to O(bm/2)

� Doubles solvable depth!

� Full search of, e.g. chess, is still hopeless…

� This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min
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CS 188: Artificial Intelligence
Uncertainty and Utilities

Dan Klein, Pieter Abbeel

University of California, Berkeley

Uncertain Outcomes
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Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

� Why wouldn’t we know what the result of an action will be?
� Explicit randomness: rolling dice
� Unpredictable opponents: the ghosts respond randomly
� Actions can fail: when moving a robot, wheels might slip

� Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

� Expectimax search: compute the average score under 
optimal play
� Max nodes as in minimax search
� Chance nodes are like min nodes but the outcome is uncertain
� Calculate their expected utilities
� I.e. take weighted average (expectation) of children

� Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[demo: min vs exp]
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Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is EXP: return exp-value(state)

def exp-value(state):

initialize v = 0

for each successor of state:

p = probability(successor)

v += p * value(successor)

return v

def max-value(state):

initialize v = -∞
for each successor of state:

v = max(v, value(successor))

return v

Expectimax Pseudocode

def exp-value(state):

initialize v = 0

for each successor of state:

p = probability(successor)

v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10
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Expectimax Example

12 9 6 03 2 154 6

Expectimax Pruning?

12 93 2
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Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true 

expectimax value 

(which would 

require a lot of 

work to compute)

Probabilities
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Reminder: Probabilities

� A random variable represents an event whose outcome is unknown

� A probability distribution is an assignment of weights to outcomes

� Example: Traffic on freeway
� Random variable: T = whether there’s traffic

� Outcomes: T in {none, light, heavy}

� Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

� Some laws of probability (more later):
� Probabilities are always non-negative

� Probabilities over all possible outcomes sum to one

� As we get more evidence, probabilities may change:
� P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60

� We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

� The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

� Example: How long to get to the airport?

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +
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What Probabilities to Use?

� In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
� Model could be a simple uniform distribution (roll a die)

� Model could be sophisticated and require a great deal of 
computation

� We have a chance node for any outcome out of our control: 
opponent or environment

� The model might say that adversarial actions are likely!

� For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

Having a probabilistic belief about 

another agent’s action does not mean 

that the agent is flipping any coins!

Quiz: Informed Probabilities

� Let’s say you know that your opponent is actually running a depth 2 minimax, using the 

result 80% of the time, and moving randomly otherwise

� Question: What tree search should you use?  

0.1          0.9

� Answer: Expectimax!

� To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

� This kind of thing gets very slow very quickly

� Even worse if you have to simulate your 

opponent simulating you…

� … except for minimax, which has the nice 

property that it all collapses into one game tree
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Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely
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Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[demo: world assumptions]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types
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Mixed Layer Types

� E.g. Backgammon

� Expectiminimax

� Environment is an 

extra “random 

agent” player that 

moves after each 

min/max agent

� Each node 

computes the 

appropriate 

combination of its 

children

Example: Backgammon

� Dice rolls increase b: 21 possible rolls with 2 dice

� Backgammon ≈ 20 legal moves

� Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

� As depth increases, probability of reaching a given 

search node shrinks

� So usefulness of search is diminished

� So limiting depth is less damaging

� But pruning is trickier…

� Historic AI: TDGammon uses depth-2 search + very 

good evaluation function + reinforcement learning: 

world-champion level play

� 1st AI world champion in any game!

Image: Wikipedia
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Multi-Agent Utilities

� What if the game is not zero-sum, or has multiple players?

� Generalization of minimax:
� Terminals have utility tuples

� Node values are also utility tuples

� Each player maximizes its own component

� Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Utilities
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Maximum Expected Utility

� Why should we average utilities?  Why not minimax?

� Principle of maximum expected utility:
� A rational agent should chose the action that maximizes its 

expected utility, given its knowledge

� Questions:

� Where do utilities come from?

� How do we know such utilities even exist?

� How do we know that averaging even makes sense?

� What if our behavior (preferences) can’t be described by utilities?

What Utilities to Use?

� For worst-case minimax reasoning, terminal function scale doesn’t matter

� We just want better states to have higher evaluations (get the ordering right)

� We call this insensitivity to monotonic transformations

� For average-case expectimax reasoning, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900
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Utilities

� Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences

� Where do utilities come from?
� In a game, may be simple (+1/-1)

� Utilities summarize the agent’s goals

� Theorem: any “rational” preferences can 
be summarized as a utility function

� We hard-wire utilities and let 
behaviors emerge
� Why don’t we let agents pick utilities?

� Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double

Oops Whew!
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Preferences

� An agent must have preferences among:

� Prizes: A, B, etc.

� Lotteries: situations with uncertain prizes

� Notation:

� Preference:

� Indifference:

A                  B

p                1-p

A LotteryA Prize

A

Rationality
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� We want some constraints on preferences before we call them rational, such as:

� For example: an agent with intransitive preferences can
be induced to give away all of its money
� If B > C, then an agent with C would pay (say) 1 cent to get B

� If A > B, then an agent with B would pay (say) 1 cent to get A

� If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

)()()( CACBBA fff ⇒∧Axiom of Transitivity:

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality
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MEU Principle

� Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
� Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

� I.e. values assigned by U preserve preferences of both prizes and lotteries!

� Maximum expected utility (MEU) principle:
� Choose the action that maximizes expected utility

� Note: an agent can be entirely rational (consistent with MEU) without ever representing or 
manipulating utilities and probabilities

� E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Human Utilities
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Utility Scales

� Normalized utilities: u+ = 1.0, u- = 0.0

� Micromorts: one-millionth chance of death, useful for 
paying to reduce product risks, etc.

� QALYs: quality-adjusted life years, useful for medical 
decisions involving substantial risk

� Note: behavior is invariant under positive linear 
transformation

� With deterministic prizes only (no lottery choices), only 
ordinal utility can be determined, i.e., total order on prizes

Human Utilities

� Utilities map states to real numbers. Which numbers?

� Standard approach to assessment (elicitation) of human utilities:

� Compare a prize A to a standard lottery Lp between

� “best possible prize” u+ with probability p

� “worst possible catastrophe” u- with probability 1-p

� Adjust lottery probability p until indifference: A ~ Lp

� Resulting p is a utility in [0,1]

0.999999                              0.000001

No change

Pay $30

Instant death
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Money

� Money does not behave as a utility function, but we can talk about the 

utility of having money (or being in debt)

� Given a lottery L = [p, $X; (1-p), $Y]

� The expected monetary value EMV(L) is p*X + (1-p)*Y

� U(L) = p*U($X) + (1-p)*U($Y)

� Typically, U(L) < U( EMV(L) )

� In this sense, people are risk-averse

� When deep in debt, people are risk-prone

Graph: Stuart Russell

Example: Insurance

� Consider the lottery [0.5, $1000;  0.5, $0]

� What is its expected monetary value?  ($500)

� What is its certainty equivalent?

� Monetary value acceptable in lieu of lottery

� $400 for most people

� Difference of $100 is the insurance premium

� There’s an insurance industry because people 

will pay to reduce their risk

� If everyone were risk-neutral, no insurance 

needed!

� It’s win-win: you’d rather have the $400 and 

the insurance company would rather have the 

lottery (their utility curve is flat and they have 

many lotteries)
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Example: Human Rationality?

� Famous example of Allais (1953)

� A: [0.8, $4k;    0.2, $0]

� B: [1.0, $3k;    0.0, $0]

� C: [0.2, $4k;    0.8, $0]

� D: [0.25, $3k;    0.75, $0]

� Most people prefer B > A, C > D

� But if U($0) = 0, then
� B > A ⇒ U($3k) > 0.8 U($4k)

� C > D ⇒ 0.8 U($4k) > U($3k)


