

گزينه 1 پاسخ صحیح است. در خازنهاى سرى، انرزی ذخيره شده با ظرفيت نسبت عكس دارد. پس انرزیى ذخيره
$\frac{q}{r}=\frac{r}{W_{1}} \Rightarrow W_{1}=r \mathrm{~mJ}$

$\frac{\varphi \mu \mathrm{F}}{r \mu \mathrm{~F}}=\frac{W_{r}}{r} \Rightarrow W_{r}=\varphi \mathrm{mJ}$
و در خازن r H برابر 9 ميلىزول مىباشد.

$\mathrm{q}_{1}=\mathrm{q}_{r} \xrightarrow{\mathrm{U}=\frac{1}{r} \frac{\mathrm{q}}{\mathrm{C}}} \frac{\mathrm{U}_{r}}{\mathrm{U}_{1}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{r}} \Rightarrow \mathrm{U}_{r}=\frac{1}{r} \mathrm{U}_{1}=\cdot / r \mathrm{~J}$
گزينه (پاسخ صحیح است. در خازنهاى سرى انرزیى به نسبت عكس ظرفيت است و در خازنهاى موازى انرزى با ظرفيت نسبت مستقيم دارد. $U_{1, r}=U_{1}+U_{r}=1 J$
$V_{1, r}=V_{r} \xrightarrow{U=\frac{1}{r} C V^{r}} \frac{U_{1, r}}{U_{r}}=\frac{C_{1, r}}{C_{r}} \Rightarrow U_{r}=1 \cdot U_{1}=1 \cdot J$
$C_{1, r}=\frac{C_{1} C_{r}}{C_{1}+C_{r}}=1 / \varepsilon \mu F$
$U_{j S}=U_{1}+U_{r}+U_{r}=\cdot / \wedge+\cdot / r+1 \cdot=\| J$

$$
C_{1}=\nu \cdot \mu \mathrm{F} C_{Y}=\Delta \mu \mathrm{F}
$$

$$
\begin{array}{ll}
\frac{\mu}{r}(r & \frac{r}{r}() \\
\mu(r & r(r
\end{array}
$$

گزينه ¢ پاسخ صحيح است.

$$
\frac{q_{\mu}}{q_{\Gamma}}=\frac{C_{r}}{C_{\Gamma}} \Rightarrow q_{\mu}=r q_{\Gamma}, q_{Y}=q_{\Gamma}+q_{\Gamma}=r q_{\Gamma}
$$

ץ- در شكل مقابل خازنها مشابهند. با بستن كليد ظرفيت معادل مجموعه چچند برابر میشود؟

$$
\begin{array}{ll}
\frac{\Delta}{r}(r & \frac{r}{r}() \\
\frac{1}{q}(r & \frac{1}{r}(r
\end{array}
$$

$$
\begin{aligned}
& C=C_{1}, v \mu_{r}^{r} C_{1}=\frac{r}{\omega} C_{1} \\
& C^{\prime}=C_{1} \text { s } \sim \mu C_{1}=\frac{r}{r} C_{1}
\end{aligned}
$$

 Y (Y) بار آن نصف میشود. آن「

گزينهى ا پاسخ صحیح است.

$$
\begin{aligned}
& C=\frac{K \varepsilon \cdot A}{d} \xrightarrow{d^{\prime}=r d} C^{\prime}=\frac{1}{r} C \\
& U=\frac{1}{r} \frac{q^{r}}{C} \Rightarrow U^{\prime}=r U \quad . \\
& V=\frac{q}{C} \Rightarrow V^{\prime}=r V \\
& E=\frac{V}{d} \xrightarrow[d^{\prime}=r d]{V^{\prime}=r V} E^{\prime}=E
\end{aligned}
$$

9- در مدار نشان داده شده در شكل، اختالاف پتانسيل دو سر خازن شمارهى

گزينهى r صحيح است.
$C_{1 r}=C_{1}+C_{Y}=r \cdot+1 \cdot=r \cdot \mu F$
$V_{V_{Y}}=V_{1}=1 \cdot$ Volt
$q_{I Y}=C_{1 Y} v_{I r}=r \cdot \times 1 \cdot=r \cdot \cdot \mu C$

$q_{\mu}=r \cdots \mu C$

 9 ميكروفارادى خواهد رسيد.

 اندازمى بردار شدت ميدان الكتريكى در فضاى بين دو صفحه ى خازن چنـد Volt/m است؟ r.. (${ }^{r}$
$\mu \cdot \cdot(\mu$
r... (r
f... (1

گزينهى ا پاسخ صحيح است.
$C=\frac{\mathrm{q}}{\mathrm{V}} \Rightarrow \mathrm{D}=\frac{\mathrm{r} \cdot}{\mathrm{V}} \Rightarrow \mathrm{V}=\mu$ Volt
$\mathrm{V}=\mathrm{Ed} \Rightarrow \mu=\mathrm{E} \times \cdots / \cdots \mathrm{E}=\mu \cdots$ Volt $/ m$
توضيح در مورد رابطهى V V : اگر در ميدان يكنواخت بين دو صفحهى خازن، ذرهاى بار مثبت با بار . را با

كارى كه ما انجام مى دهيم: W - FdCos π
$\mathrm{W}=\mathrm{Eq}$, d
$\mathrm{W}=\Delta \mathrm{U} \Rightarrow \Delta \mathrm{U}=\mathrm{Eq}, \mathrm{d}$
$\Delta \mathrm{V}=\frac{\Delta \mathrm{U}}{\mathrm{q}}=\frac{\mathrm{Eq} . \mathrm{d}}{\mathrm{q} .}=\mathrm{Ed}$
 سرعت ثابت از صفحهى مثبت ببريم، مىتوان كفت:
-9 خازن (v)

+ ${ }^{4}$
$\frac{1}{r}(r$
r(r
$1(1$
كزينهى r بإسخ صحيح است.
$\left.\begin{array}{l}q_{1}=C_{1} V_{1}=\Delta \cdot x \mu \cdot=r \cdots \mu C \\ q_{Y}=C_{Y} V_{Y}=\mu \cdot \times 1 r \cdot=\Delta r \cdot \mu \mathrm{C}\end{array}\right\} \Rightarrow q_{J}=q_{1}^{\prime}+q_{Y}^{\prime}=q_{1}+q_{Y}=r \cdot \cdots+\Delta r \cdot \cdot=v r \cdot \cdot \mu \mathrm{C}$

$q_{1}^{\prime}=C_{1} V_{j}^{\prime}=\omega \cdot \times \wedge \cdot=\psi \cdots \mu C \Rightarrow \frac{q_{1}^{\prime}}{q_{1}}=\frac{\mu_{1} \ldots}{r \ldots}=r$
$V^{\prime}=\frac{\left|C_{1} V_{1} \pm C_{Y} V_{Y}\right|}{C_{1}+C_{Y}}$
$\frac{q_{1}^{\prime}}{q_{1}}=\frac{V^{\prime}}{V_{1}}=\frac{\left|C_{1} V_{1}+C_{Y} V_{Y}\right|}{V_{1}\left(C_{1}+C_{Y}\right)}=\frac{0 \cdot \times \mu \cdot+\mu \cdot \times 1 r \cdot}{\mu \cdot(0 \cdot+\mu \cdot)}=r$

گزينهى 1 پاسخ صحیح است.
$U_{Y}=r \cdot \mu \mathrm{~J} \Rightarrow \frac{1}{r} \frac{q_{r}^{r}}{C}=r \cdot \Rightarrow \frac{1}{r} \frac{q_{r}^{r}}{10}=r \cdot \Rightarrow q_{Y}=r \cdot \mu \mathrm{C}$
$q_{Y}=q_{Y}=r \cdot \mu C$

$U_{1}=v \Delta \mu J \Rightarrow \frac{1}{r} \frac{q_{1}^{r}}{C_{1}}=v_{\Delta} \Rightarrow \frac{1}{r} \frac{(r \cdot)^{r}}{C_{1}}=v_{\Delta} \Rightarrow C_{1}=4 \mu \mathrm{~F}$
خازن معادل كل مدار را به دست مىآوريم در شرايطى كه دو خازن $\frac{1}{C_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}^{\prime}}+\frac{1}{\mathrm{C}_{r}}=\frac{1}{\varphi}+\frac{1}{r+v}+\frac{1}{10}=\frac{0+r+r}{r \cdot} \Rightarrow C_{\mathrm{T}}=r \mu \mathrm{~F}$
$\mathrm{q}_{\mathrm{T}}=\mathrm{q}_{\boldsymbol{1}}=\mathrm{q}_{\varphi}=\mathrm{q}_{\mu}=r \cdot \mu \mathrm{C}$
$\mathrm{q}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T}} \mathrm{V}_{\mathrm{T}} \Rightarrow \mathrm{V}_{\mathrm{T}}=\frac{\mathrm{q}_{\mathrm{T}}}{\mathrm{C}_{\mathrm{T}}}=\frac{r_{\cdot}}{r}=1 \cdot \Rightarrow \mathrm{~V}_{\mathrm{AB}}=1 \cdot \mathrm{H}$
$C_{\Delta}=r \cdot n \mathrm{nF}$

$$
\mu \cdot(r
$$

D... (r
1.. (Γ
$C_{Y Y}=C_{1}+C_{Y}=r \cdot+\wedge \cdot=1 \cdot \cdot(n F)$
$\frac{1}{C_{1 Y \mu}}=\frac{1}{C_{1 Y}}+\frac{1}{C_{\mu}}=\frac{1}{1 \cdot n}+\frac{1}{1 \cdot \theta}=\frac{1}{\omega \cdot} \Rightarrow C_{1 Y \mu}=0 \cdot(n F)$
$C_{1 Y M Y}=C_{1 Y \mu}+C_{\mu}=0 \cdot+0 \cdot=1 \cdot(n F)$
$\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1 r \mu \mu}}+\frac{1}{\mathrm{C}_{\Delta}}=\frac{1}{1 \cdot \cdot}+\frac{1}{r_{\cdot}}=\frac{r}{r_{\cdot \cdot}} \Rightarrow \mathrm{C}_{\mathrm{T}}=\frac{r \cdot \cdot}{r}(\mathrm{nF})$
$\mathrm{q}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T}} \mathrm{V}_{\mathrm{T}}=\frac{r \cdot \cdot}{r} \times q=\mu \cdot \cdot(\mathrm{nC})$

$q_{1 r}=q_{1 Y r}=r \cdots(n C), \quad V_{1 r}=\frac{q_{1 r}}{C_{1 r}}=\frac{r \cdot \cdot}{1 .}=r($ Volt $)$
$V_{1}=V_{1 r}=r($ volt $), q_{1}=C_{1} V_{1}=r \cdot \times r=r \cdot(n C)$

$1 \wedge(4$

IT KT ولت است. حداكثر اختلاف پتانسيل دو سر مجموعه چناند ولت باشد تا هـا هيج كدام از خازنها آسيب نبييند؟ Yy (1

بايد V
كه بيشترين ولتازٍ را دارد. چون خازنها مشابهند آنكه بيشترين بار را دارد بارد بيشترين ولتاز را را خواهد داشت

$$
\frac{q_{1, r}}{q_{\varphi}}=\frac{C_{1, r}}{C_{\varphi}}=\frac{1}{r} \text { بايد بين } q_{t}
$$

$q_{1}=q_{r}=\frac{1}{r} q_{t}, q_{\varphi}=\frac{r}{r} q_{t}$
$\frac{q_{\mu}}{q_{\Delta}}=\frac{C_{r}}{C_{\Delta}}=\frac{1}{1}$ ي
$q_{\mu}=q_{\omega}=\frac{1}{r} q_{t}$

$$
\frac{V_{1 \mu \psi}}{V_{r \Delta}}=\frac{C_{r \Delta}}{C_{1 r \psi}}
$$

گزينهى ا پاسخ صحيح است. اگر دو خازن V,
 كنند. با استفاده از پايستگى بار الكتريكى مى توانيم بنويسيم:
$V=\frac{\left|C_{1} V_{1} \pm C_{r} V_{r}\right|}{C_{1}+C_{r}}$
علامت مثبت مربوط به اتصال صفحات همنام خازنها والما و علامت منفى مربوط به اتصال

 مى كنيم وصل مى شود.
$r \cdot+r \cdot=q \cdot \Rightarrow C^{\prime}=\frac{r r \cdot \times q \cdot}{1 r \cdot+q \cdot}=r \cdot \mu \mathrm{~F}, \mathrm{~V}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}}{\mathrm{C}_{1}+\mathrm{C}^{\prime}}$
$\Rightarrow \mathrm{V}=\frac{q \cdot \times r \cdot}{q \cdot+\mu \cdot}=1 \wedge(\mathrm{~V}), \mathrm{q}_{1}^{\prime}=\mathrm{C}, \mathrm{V}=9 \cdot \times 1 \wedge=1 \cdot \wedge \cdot \mu \mathrm{C}$

گزينهى بررسى كنيم. وقتى كليد را بينديم سه خازن موازى وسط مدار حذف (اتصال كوتاه) مىشوند. $\mathrm{u}=\frac{1}{Y} \mathrm{CV}^{\Upsilon}$
$\frac{1}{C_{t}}=\frac{1}{C_{1}}+\frac{1}{r_{1} C_{1}}+\frac{1}{C_{1}} \rightarrow C_{t}=\frac{r C_{1}}{v}$
كليد باز:
بسته:
$\frac{1}{C_{t}^{\prime}}=\frac{1}{C_{1}}+\frac{1}{C_{1}} \rightarrow C_{t}^{\prime}=\frac{C_{1}}{r_{r}}$
$\frac{u^{\prime}}{u}=\frac{C_{t}^{\prime}}{C_{t}}=\frac{\frac{C_{1}}{r}}{\frac{r C_{1}}{v}}=\frac{v}{4}$

10- هفت خازن مشابه با ظرفيت C در مدارى مطابق شكل مقابل قرار دارند. ظرفيت خازن معادل چند برابر C است؟
$\begin{array}{ll}\frac{r}{v}(r & \frac{v}{r}() \\ \frac{r)}{1 .}(r & \frac{1 \cdot}{r)}(r\end{array}$
گزينهى ץ پاسخ صحیح است. مراحل معادلسازى به صورت زير است:

$\rightarrow \mathrm{C}_{\mathrm{T}}=\frac{r}{r} \mathrm{C}+{ }_{\partial}^{r} \mathrm{C}=\frac{r 1}{{ }_{l}} \mathrm{C}$

צاء- در شكل مقابل فضاى بين صفحات خازنها خالى است. اگر يكى دىالكتريكى وارد فضاى بين دو صفحهى CY نماييم

(r

 مىشود.

$$
\begin{aligned}
& q_{t}=C_{t} V_{t} \xrightarrow[\text { | فزا } ا \text { | فزايش } C_{t}]{\stackrel{t}{ت} V_{t}} q_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{1, r}=V_{r} \xrightarrow{q_{1} g_{r}=q_{r}} C_{\varphi}, r=C_{r} \Rightarrow\left(r \cdot v, \omega C_{r}\right)=1 \cdot \Rightarrow \frac{r \cdot C_{r}}{r \cdot+C_{r}}=1 . \\
& \Rightarrow C_{r}=r \cdot \mu F
\end{aligned}
$$

^ا-ا اگر پتانسيل نقطهى A برابر ••• و ولت باشد، پتانسیل نقطهى B
$\mu \cdot(1$
c. (
$0 \cdot(\mu$
c. $(4$

$$
\begin{aligned}
& C_{Y, \mu, \mu}=C_{\varphi}+\frac{C_{Y} \cdot C_{\mu}}{C_{\varphi}+C_{\mu}}=1 \Lambda+\frac{9 \cdot \times 10}{v \Delta}=\mu \cdot \mu F \\
& C_{1}=C_{r, r,{ }_{\varphi}}=q_{1}=q_{r}, r,{ }_{\varphi} \Rightarrow V_{1}=V_{r, r, r}=\frac{1}{r} V_{t}=0 \cdot(\mathrm{v}) \\
& \left\{\begin{array}{l}
V_{Y}+V_{\mu}=0 . \\
C_{Y} V_{Y}=C_{\mu} V_{\mu} \Rightarrow V_{\mu}=\mu V_{Y}
\end{array} \Rightarrow V_{\mu}=\frac{\varphi}{\Delta} \times \omega \cdot=\varphi \cdot(v)\right.
\end{aligned}
$$

19- با استغاده از سه خازن ${ }^{\text {1 }}$

$$
9 \cdot(r \quad 9 \cdot(r \quad 1 r \cdot(r
$$

گزينهى پ پاسخ صحیح است

* ظرفيت معادل تر كيب موازى از ظرفيت هر يـى از خازنها بزرگتر است.

$$
\mathrm{C}_{\mathrm{t}}=\mathrm{C}+\mathrm{C}^{\prime}>\mathrm{C}, \mathrm{C}^{\prime}
$$

* ظرفيت معادل تر كيب سرى از ظرفيت هر يی از خازنها كوپکتر است.

$$
C_{t}=r \Delta, C_{r}=1 \cdot, C_{\varphi}=1 \cdot, C_{1}=r
$$

$$
\mathrm{V}_{Y, \mu}=\mathrm{V}_{\mathrm{t}} \Rightarrow \mathrm{q}_{Y, r}=\mathrm{C}_{Y, r} \mathrm{~V}_{\mathrm{t}}=\Delta \times 1 r=q \cdot \mu \mathrm{C} \Rightarrow \mathrm{q}_{Y}=\mathrm{q}_{\mu}=9 \cdot \mu \mathrm{C}
$$

,

$$
\begin{aligned}
& \text {-/ra (} 4 \\
& \text {./.ro (} \uparrow \\
& \text { •/... } 0 \text { (} \\
& \cdot / \cdot 0(1
\end{aligned}
$$

گزينهى ا پاسخ صحيح است. با استفاده از بار ذخيره شده در كل مجموعه، ظرفيت معادل C C , را حساب مى كنيم، چچنانچه
 $q=C V \Rightarrow 1 \cdots=C \times r \cdots C=\Delta \mu \mathrm{F} \Rightarrow \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{Y}}+\ldots$
$\Rightarrow \frac{1}{\Delta}=\frac{1}{q_{\cdot}}+\frac{1}{r_{\cdot}}+\frac{1}{r_{\cdot}}+\frac{1}{C_{r}} \Rightarrow C_{r}=1 \cdot \mu \mathrm{~F}$
$U_{r}=\frac{q^{r}}{r C_{r}} \Rightarrow U_{r}=\frac{(1 \cdots)^{r}}{r \times 1 \cdot} \Rightarrow U_{r}=0 \cdots \cdot \mu \mathrm{~J}=\cdot / \cdot \omega \mathrm{J}$
در خازنهاى سرى، بار كل مجموعه و تكتک خازنها برابر است.

آ- در شكل مقابل اگر انرزى ذخيره شده در مجموع سه خازن برابر ^ی/•• ميكروزول باشد
 .$/ \cdot 1$ (r $1 / 9$ () ./TY (Y •/IT (

گز ينهى r پیاسخ صحیح است

 خازن r 1 ا مى توانيم بنويسيم:

$$
\left.\begin{array}{c}
\frac{W}{W_{1 r}}=\frac{\frac{1 q^{r}}{r} \frac{1}{C}}{\frac{1}{r} \frac{q^{r}}{C_{1 r}}} \Rightarrow \frac{W}{W_{1 r}}=\frac{C_{1 r}}{C} \\
\frac{1}{C}=\frac{1}{r}+\frac{1}{1 r}+\frac{1}{19} \Rightarrow C=\frac{\mu \Lambda}{19} \mu F
\end{array}\right\} \Rightarrow \frac{\cdot / r \wedge}{W_{1 r}}=\frac{1 r}{\frac{\mu \lambda}{19}} \Rightarrow W_{1 r}=\cdot / \cdot \wedge \mu \mathrm{J}
$$

بY- بفحات خازنى كه دیالكتريى آن هوا است به مولدى متصل است. در همين حال يک قطعه كائوچو بين صفحات آن
قرار مىدهيم. كداميك از گزارههاى زير درست است؟
() شدت ميدان الكتريكى بين صفحات افزايش مى يابد.
Y) شدت ميدان الكتريكى بين صفحات تغيير نمى كند.
ץ) شدت ميدان الكتريكى بين صفحات كاهش مىيابد.
ب) تغيير شدت ميدان الكتريكى به نوع كائو چو بستگى دارد.
 خازن همواره ثابت است، از طرفى مىدانيم كه شدت ميدان الكتريكى يكنواخت بين صفحههاى خازن از رابطهى (V) ثابت و فاصلهى بين دو صفحهى خازن (d) نيز ثابت است و وارد
 خازن تغيير نمى كند. در اين جا لازم است كه به نقش حضور دى الكتريك در بين صفحههایى خازن اشارهاى شود. مى دانيم طبق رابطهى C= kع.A

 دى الكتريك بين صفحههاى خازن ميدان الكتريكى الكتريكى بين صفحههاى خازن
 الكتريكى بين صفحههاى خازن تغيير نمى كند.

شז- خازن مسطحى به ظرفيت

Y) تغييرى •(ميلى نمى كندلد. كتر مىشود.
() • ميلىزول بيشتر مىشود.
「 ٪) • ميلىزول بيشتر مىشود.
 ثابت q=C, $V_{1}=1 \times r \ldots=r \cdot \mu \mu \mathrm{C}$

بدون تغيير باقى مىمانـد وقتى صفحهماى خازن را جابهجا می كنيم تا نصف مساحت صفحتهما مقابل يكديگر قرار كيره، بار الكتريكى خازن
 الكتريكى خازن تخت C=E. نصف كاهش مى يابد.
$\mathrm{A}_{r}=\frac{1}{r} \mathrm{~A}_{1} \rightarrow \frac{\mathrm{C}_{r}}{\mathrm{C}_{1}}=\frac{\varepsilon \cdot \frac{\mathrm{A}_{r}}{\mathrm{~d}}}{\varepsilon \cdot \frac{\mathrm{~A}_{\frac{1}{}}^{d}}{d}}=\frac{\mathrm{A}_{r}}{\mathrm{~A}_{1}}=\frac{1}{r} \rightarrow \mathrm{C}_{r}=\frac{1}{r} \mathrm{C}_{1}=\frac{1}{r} \times 1=\cdot / \Delta \mu \mathrm{F}$
با معلوم بودن بار الكتريكى خازن و ظرفيت الكتريكى خازن در حالتهاى اوليه و ثانويه، مىتوان انرظى الكتريكى

$\mathrm{q}_{1}=\mathrm{q}_{\mathrm{r}}=\mathrm{q}, \mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{r}}=\cdot / \Delta \mu \mathrm{F}$
$U_{1}=\frac{1}{r} \frac{q^{r}}{C_{1}}=\frac{1}{r} \times \frac{r \cdot{ }^{r}}{1}=r \times 1 \cdot{ }^{r} \mu \mathrm{~J}=r \cdot \mathrm{~mJ}$
$U_{r}=\frac{1 q^{r}{ }_{r}^{r}}{C_{r}}=\frac{1}{r} \times \frac{r \cdot{ }^{r}}{\cdot / \Delta}=\varphi \times 1 \cdot{ }^{\psi} \mu \mathrm{J}=\mu \cdot \mathrm{mJ}$

 كار مثبت انجام میدهد كه سبب ايجاد $\Delta \mathrm{A}$ مثبت شده است.

 هوا است. صفحات انتهايیى را به يكديگر متصل مى كنيم. ظرفيت معادل بين نقاط M و

$\frac{1}{r} \varepsilon \cdot \frac{A}{d}(r$	$\frac{r}{r} \varepsilon \cdot \frac{A}{d}()$
$\frac{r}{r} \varepsilon \cdot \frac{A}{d}(r$	$r \varepsilon \cdot \frac{A}{d}(r$

 ناپيز به هم متصل هستند، در نظر بگيريم.

 صورت موازى عمل مى كند. ظرفيت معادل بين نقاط N M و، ظرفيت معادل شكل زير است:

ظرفيت خازن معادل، خازنهاى C, و Cr برابر است با: : خازنهاى سرى $: \frac{1}{\mathrm{C}^{\prime}}=\frac{1}{\mathrm{C},}+\frac{1}{\mathrm{C}_{r}} \rightarrow \frac{1}{\mathrm{C}^{\prime}}=\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}=\frac{r}{\mathrm{C}} \rightarrow \mathrm{C}^{\prime}=\frac{\mathrm{C}}{\mathrm{r}}$

ظرفيت خازن معادل، خازنهاى C' و C ${ }^{\prime}$ برابر است با:
: خازنهاى موازى : $\mathrm{C}^{\prime \prime}=\mathrm{C}^{\prime}+\mathrm{C}_{\mathrm{r}} \rightarrow \mathrm{C}^{\prime \prime}=\frac{\mathrm{C}}{r}+\mathrm{C} \rightarrow \mathrm{C}^{\prime \prime}=\frac{r}{r} \mathrm{C}$
با جايگزينى مقدار C از رابطهى بالا، ظرفيت معادل بين دو نقطهى N M M بر حسب فاصلهى بين صفحهها (d) و مساحت سطح آنها (A) به دست مى آيد. $C_{M N}=C^{\prime \prime}=\frac{r}{r} \times \frac{\varepsilon \cdot A}{d} \rightarrow C_{M N}=\frac{r \varepsilon \cdot A}{r d}$

