

گزینه ۱ پاسخ صحیح است. زیرا اختلاف پتانسیل دو سر مقاومت R_Y در هر دو حالت باز و بسته بودن کلید برابر با اختلاف پتانسیل دو سر مولد یعنی ع است، چه مقاومت R_V در مدار باشد و چه از مدار خارج شده باشد.

گزینه ی ۳ پاسخ صحیح است. نیروی محرکه ی کل برابر است با نیروی محرکه ی یکی از شاخههای موازی مقاومت $\frac{Fr_1}{Y}$ درون هریک از شاخهها Fr_1 و مقاومت درونی کل $\frac{Fr_1}{Y}$ است.

$$I = \frac{\epsilon r}{r} = \frac{\epsilon r}{r} = \frac{\epsilon r}{r} = \frac{\epsilon r}{r} = \frac{\epsilon r}{r}$$

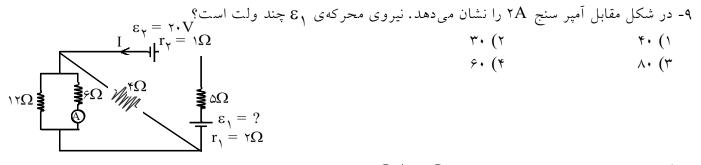
$$I = \frac{\epsilon r}{R + r} = \frac{\lambda}{\epsilon r} = \frac{\lambda}{\epsilon r} \Rightarrow I = 1/\epsilon A$$

۶- یک باتری ۱۲ ولتی به مقاومت داخلی ۳Ω/۰ را با وصل کردن به یک باتری ۲۴ ولتی که مقاومت داخلی آن ناچیز است، پر میکنیم. چه توانی برحسب وات در آن به مصرف میرسد؟ ۱) ۹۶۰ (۲ ۴۸۰ ۲) ۴۸۰ ۳) ۸۴۰ ۸۴۰ (۲

$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$

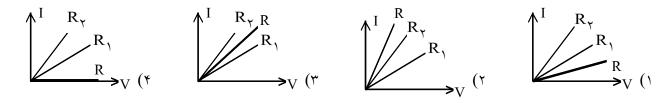
$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$

$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$

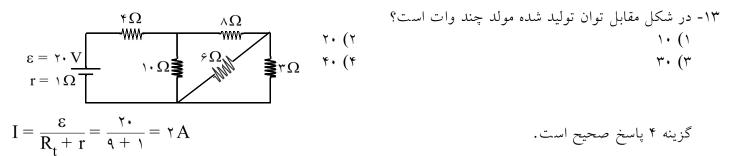

$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$

$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$

$$I = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}} = \frac{r_{Y}}{r_{Y}}$$


$$I = \frac{r_{Y}}{$$

۸- مقاومت یک سیم در دمای C ۱۰۰[°] برابر Ω ۳۰۰۵ است. اگر دما C ۲۰[°] افزایش یابد مقاومت Ω زیاد می شود. مقاومت سیم در دمای C ۴۰۰[°] چند اهم است؟ مقاومت سیم در دمای C ۴۰۰[°] چند اهم است؟ (۳) ۲۹۶ ۳) ۲۹۶ (۳

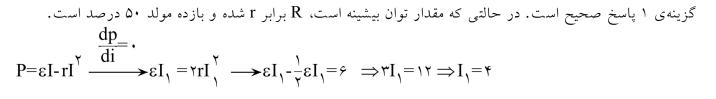

گزینه ۳ پاسخ صحیح است. مقاومت Ω ۱۲ با Ω^{9} موازی است. چون مقاومت ۱۲ اهمی ۲ برابر مقاومت ۶ اهمی است. پس شدت جریان آن نصف ۲۸ می باشد. پس مجموعاً از شاخهی سمت چپ ۳A = ۲ + ۲ جریان می گذرد. از طرفی معادل مقاومتهای ۱۲ و۶ اهمی برابر Ω ۲ است. پس از مقاومت چهار أهمی نیز جریان ۳A می گذرد. در نتیجه از کل آنها ۶A = ۳ + ۳ می گذرد، که جریان کل مدار نیز می باشد.

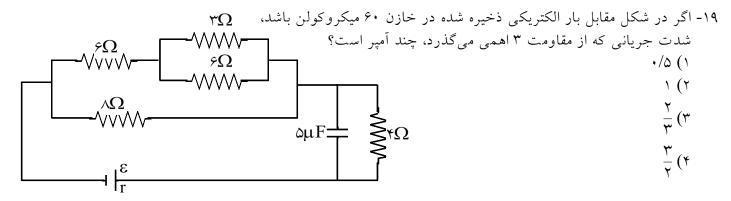
$$R_{\gamma} = \frac{\gamma + \gamma + \varphi}{\gamma + \varphi} = + \Omega \longrightarrow I = \pi + \pi = \varphi A$$
$$\varphi = \frac{\varepsilon_{\gamma} - \gamma}{\gamma + \varphi + \gamma + \gamma} \Longrightarrow \varepsilon_{\gamma} = \wedge V$$

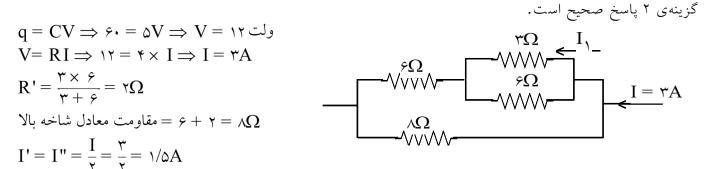
گزینه ۲ پاسخ صحیح است. طبق قانون اهم $I = \frac{1}{R}$ یعنی $\frac{1}{R}$ شیب نمودار (I - V) میباشد و با کاهش مقاومت شیب نمودار افزایش مییابد. در اتصال موازی مقاومتها، مقاومت حاصل از تکتک مقاومتها کوچکتر بوده و لذا شیب خط مربوط به آن نسبت به R_{Λ} و R_{Λ} بیشتر است.

$$I = \cdot/\delta + \cdot + \cdot 1/\delta = rA$$
$$V_{A} - \delta - r(1/\delta) - r(r) - \cdot (r) + \cdot \cdot = V_{B} \Longrightarrow V_{A} - V_{B} = \cdot \cdot V$$

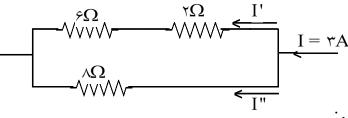
$$p = \epsilon I = \tau \cdot \times \tau = \tau$$


$$\mathbf{r}_{1} = \mathbf{r}_{\mathbf{k}} \mathbf{R}_{\mathbf{v}} \mathbf{R}_$$


$$\begin{split} \begin{array}{c} \overbrace{I_{1}}^{\mathsf{WW}} \xrightarrow{\mathsf{VW}}_{\mathsf{I}_{1}} \underbrace{I_{\gamma}}_{\mathsf{I}_{\gamma}} \underbrace{I_{\gamma}}_{\mathsf{I}_{\gamma}}$$


$$\begin{array}{c} \underbrace{\mathsf{YA}}_{\mathsf{h}} & \underbrace{\mathsf{r}} \cdot \mathsf{V} & \mathsf{a}\Omega \\ \mathsf{e}\mathsf{Li} \neq \mathsf{lak} \mathsf{H}_{\mathsf{e}\mathsf{e}\mathsf{V}} & \mathsf{N} \\ \mathsf{e}\mathsf{Li} \neq \mathsf{lak} \mathsf{H}_{\mathsf{e}\mathsf{e}\mathsf{V}} \\ \mathsf{e}\mathsf{Li} \neq \mathsf{lak} \mathsf{H}_{\mathsf{e}\mathsf{e}\mathsf{V}} \\ \mathsf{r} \\ \mathsf{h} \\ \mathsf{h}$$

۱۷- دو سیم هم جنس A و B دارای طولهای $L_A = rL_B$ و جرمهای $m_A = sm_B$ هستند. در دمای مساوی مقاومت سیم A چند برابر سیم B است؟ ۲) ۲ م لا ۳) ۳ ۲ ۱۸ (۱


R

چون مقاومت دو شاخه برابر Ω شده است، لذا جریان مساوی از آن ها عبور می کند.

برای مقاومت Ω و مقاومت معادل Ω به دست آمده داریم:

 $RI' = R_1 I_1 \Longrightarrow \tau \times 1/a = \tau I_1 \Longrightarrow I_1 = 1A$

گزینهی ۲ پاسخ صحیح است.

$$I = \frac{\varepsilon}{R+r} \Rightarrow \begin{cases} I_{\gamma} = \frac{\varepsilon}{r+r} = \frac{\varepsilon}{\gamma r} \\ I_{\gamma} = \frac{\varepsilon}{\gamma r+r} = \frac{\varepsilon}{\gamma r} \end{cases}$$
$$V_{\gamma} = \frac{I_{\gamma}r}{I_{\gamma}r} = \frac{\frac{\varepsilon}{\gamma r}}{\frac{\varepsilon}{\gamma r}} = \frac{\gamma}{\gamma}$$
$$V_{r_{\gamma}} = \frac{I_{\gamma}r}{I_{\gamma}r} = \frac{\frac{\varepsilon}{\gamma r}}{\frac{\varepsilon}{\gamma r}} = \frac{\gamma}{\gamma}$$


۲۱- در مدار نشان داده شده در شکل، نسبت توان تولیدشده به وسیله ی مولد ۲ را بازده مولد ۲ می گویند. بازده مولد ۲ چه

$$\mathbf{R}_{\gamma} = \mathbf{F} \Omega$$

قدر است؟

 $\mathbf{R}_{\gamma} = \mathbf{F} \Omega$

 $\mathbf{R}_{\gamma} = \mathbf{F} \operatorname{volt}$

 $\mathbf{R}_{\gamma} = \mathbf{F} \Omega$

 $\mathbf{R}_{\gamma} = \mathbf{F} \operatorname{volt}$

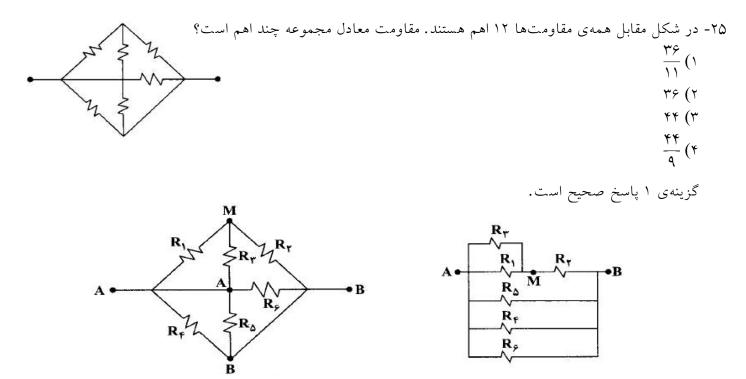
 $\mathbf{R}_{\gamma} = \mathbf{F} \Omega$

 $\mathbf{R}_{\gamma} = \mathbf{F} \operatorname{volt}$

 $\mathbf{R}_{\gamma} = \mathbf{F} \cdot \operatorname{volt}$

۲۲- دو سیم همجنس با جرم یکسان موجود است. طول یکی ۵ برابر دیگری است. اگر مقاومت سیم کوتاهتر ۲۰ اهم باشد، مقاومت سیم دیگر چند اهم است؟ (دمای دو سیم برابر است.) ۱) ۱۰۰ ۲۰۰ ۲۱ ۲۰۰ ۲۰۰ ۲۱ ۲۰۰

گزینهی ۳ پاسخ صحیح است. وقتی دو سیم، همجنس و همدما هستند، چگالی آنها مساوی است و چون همجرم هستند، حجم آنها نیز برابر است. سیم به شکل استوانه است، پس حجم آن برابر حاصلضرب طول در مساحت مقطع است. (_۲۲ مقاومت سیم کوتاهتر است.)


$$\begin{split} I_{1}A_{1} &= I_{Y}A_{Y} \Rightarrow \delta I_{Y} . \ A_{1} = I_{Y}A_{Y} \Rightarrow \delta A_{1} = A_{Y} \\ R &= \frac{\rho I}{A} \Rightarrow \frac{R_{Y}}{R_{1}} = \frac{\rho_{Y}}{\rho_{1}} . \ \frac{I_{Y}}{I_{1}} . \ \frac{A_{1}}{A_{Y}} = 1 \times \frac{1}{\delta} \times \frac{1}{\delta} \Rightarrow \frac{R_{1}}{R_{Y}} = 7\delta \Rightarrow R_{1} = \delta \cdot \cdot \Omega \\ i \geq 1 \\ i \geq 1$$

گزینهی ۳ پاسخ صحیح است. با توجه به این که q=It است، پس سطح زیر نمودار برابر بار عبوری در مدت معین میباشد. در ۱۰ ثانیه اول شدت جریان متغیر و در ۱۰ ثانیه بعدی شدت جریان ثابت میباشد.

$$\begin{cases} s_{\gamma} = (\lambda + 1\gamma) \times \frac{\gamma}{\gamma} = \gamma \cdot \cdot \\ s_{\gamma} = \gamma \cdot \times \gamma = \gamma \cdot \cdot \\ q_{t} = \gamma \cdot \cdot + \gamma \cdot = \gamma \gamma \cdot C \end{cases} \qquad \begin{cases} s_{\gamma} = (\lambda + 1\gamma) \times \frac{\gamma}{\gamma} = \gamma \cdot \cdot \\ s_{\gamma} = \gamma \cdot \times \gamma = \gamma \gamma \cdot C \\ q_{t} = \gamma \cdot \cdot + \gamma \cdot = \gamma \gamma \cdot C \end{cases} \Rightarrow q_{t} = s_{\gamma} + s_{\gamma}$$

 $\begin{array}{c} \mathsf{Y}_{\mathsf{T}} \cdot \mathsf{ident}(\mathsf{r}, \mathsf{a}) = \mathsf{f}_{\mathsf{A}} \\ \mathbb{E}_{\mathsf{T}} \mathsf{f}_{\mathsf{C}} \mathsf{f}_{\mathsf{A}} \\ \mathsf{S}_{\mathsf{C}} \mathsf{ident}(\mathsf{r}, \mathsf{a}) = \mathsf{f}_{\mathsf{A}} \\ \mathsf{f}_{\mathsf{C}} = \mathsf{f}_{\mathsf{B}} \\ \mathsf{f}_{\mathsf{A}} \\ \mathsf{f}_{\mathsf{A}} = \mathsf{f}_{\mathsf{B}} \\ \mathsf{f}_{\mathsf{A}} = \mathsf{f}_{\mathsf{B}} \\ \mathsf{f}_{\mathsf{A}} = \mathsf{f}_{\mathsf{B}} \\ \mathsf{f}_{\mathsf{A}} \\ \mathsf{f}_{\mathsf{A}} = \mathsf{f}_{\mathsf{B}} \\ \mathsf{f}_{\mathsf{A}} \\ \mathsf{f}_{\mathsf{C}} \\ \mathsf{f}_{\mathsf{f}_{\mathsf{C}} \\ \mathsf{f}_{\mathsf{f}_{\mathsf{C}} \\ \mathsf{f}_{\mathsf$

$$\begin{cases} \mathbf{r} \cdot \mathbf{I}_{\gamma} = \mathbf{r} \cdot \mathbf{I}_{\gamma} \\ \mathbf{I}_{\gamma} + \mathbf{I}_{\varphi} = \mathbf{r} \end{cases} \implies \begin{cases} \mathbf{I}_{\gamma} = \frac{\mathbf{r}}{\mathbf{0}} \times \mathbf{r} = \mathbf{r}/\mathbf{r} \mathbf{A} \\ \mathbf{I}_{\varphi} = \frac{\mathbf{r}}{\mathbf{0}} \times \mathbf{r} = \mathbf{r}/\mathbf{r} \mathbf{A} \\ \mathbf{I}_{\varphi} = \frac{\mathbf{r}}{\mathbf{0}} \times \mathbf{r} = \mathbf{r}/\mathbf{r} \mathbf{A} \\ \mathbf{I}_{\varphi} = \frac{\mathbf{r}}{\mathbf{r}} \times \mathbf{r} = \mathbf{r} \mathbf{A} \\ \mathbf{I}_{\varphi} = \frac{\mathbf{r}}{\mathbf{r}} \times \mathbf{r} = \mathbf{r} \mathbf{A} \end{cases} \xrightarrow{\mathbf{I}} \mathbf{I} = \mathbf{r} - \mathbf{r}/\mathbf{r} = \mathbf{r}/\mathbf{r} \mathbf{A}$$

رسنج A 🕂 را نشان میدهد. اگر هر دو کلید بسته شوند،	در مدار مقابل اگر کلید k _۲ بسته و k _۲ باز باشد، آمپ	-7V
	آمپرسنج چند آمپر را نشان میدهد؟ م	
$\frac{1}{1} \varepsilon = 1 \Delta v \mathbf{k}_{\gamma} \mathbf{k}_{\gamma} \mathbf{k}_{\gamma}$	$(1) \frac{\omega}{\gamma}$	
$\varepsilon = 1\Delta v k_{\gamma} \qquad \mathbf{R} \qquad \mathbf{k}_{\gamma} \qquad \mathbf{k}_$	٣ (٣ م	

$$I_{\gamma} = \frac{\varepsilon}{\gamma + \frac{\gamma R \cdot R}{\gamma R + R}} = \frac{\varepsilon}{\gamma + \frac{\gamma}{\pi} R}$$

RI_{\gamma} = \gamma RI_{\gamma} \Rightarrow I_{\gamma} = \gamma I_{\gamma} \Rightarrow I_{\gamma} = \frac{\gamma}{\gamma + \gamma} = \frac{\gamma}{\pi} I_{t} = \frac{\gamma}{\pi} \frac{\varepsilon}{\gamma + \frac{\gamma}{\pi} R}

$$\Rightarrow \frac{\gamma}{r} = \frac{\gamma \times \gamma \delta}{r + \gamma R} \Rightarrow R = r \Omega$$
$$I_{t} = \frac{\varepsilon}{\gamma + \frac{R}{\gamma}}$$
$$I'_{\gamma} = \frac{\gamma}{\gamma} I_{t} = \frac{\varepsilon}{\gamma + R} = \frac{\gamma \delta}{r + \gamma} = rA$$

حالت دوم: مقاومت R افقی، اتصال کوتاه شده است. $r = 1 \Delta v$ المحالة $r = 1 \Delta v$ المحالة $r = 1 \Delta v$ المحالة $r = 1 \Omega$

§r = 1Ω

گزینهی ۳ پاسخ صحیح است.

≸R

 $\varepsilon = 1 \Delta v$ I_{τ}

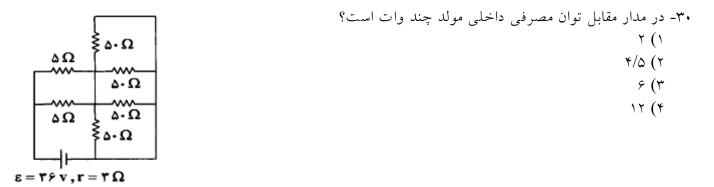
حالت اول:

۲۸- در شکل مقابل، لامپها مشابهاند (مشخصات اسمی همهی لامپها ۲۰۰۷ و ۱۲۰ و ۱۲۰
 ۱۳۰۰ وات است) توان مصرفی در مجموعه چند وات است؟
 ۲۲۰۰ (۳
 ۲۲۰۰ (۳
 ۲۰ (۳

گزینه کا پاسخ صحیح است. چون لامپها سری و مشابه هستند، اختلاف پتانسیل دو سر هر کدام $V_t = V_t$ است. $V_1 = V_y = V_y = \frac{1}{w} \times 17. v$

$$P = \frac{V^{\gamma}}{R} \Longrightarrow \frac{P}{\gamma \cdot \cdot} = \left(\frac{\frac{1}{r} \times \gamma \cdot \cdot}{\gamma \cdot \cdot}\right)^{\gamma} \Longrightarrow P_{\gamma} = P_{\gamma} = P_{\gamma} = \frac{1}{q} \times \gamma \cdot \cdot$$
$$P_{t} = P_{\gamma} + P_{\gamma} + P_{\gamma} = \gamma P_{\gamma} = \epsilon \cdot W$$

۲۹- اگر یک لامپ ۲ ۲۲۰ و W ۱۰۰ را به مدت ۱۱ ساعت به برق ۷ ۱۱۰ وصل کنیم، چند آمپر ساعت بار الکتریکی از آن عبور میکند؟


$$\mathbf{r} (\mathbf{r} \qquad \mathbf{r}) \Delta \mathbf{r} \qquad \mathbf{r}) \Delta \mathbf{r} \qquad \mathbf{r}) \mathbf{r} \mathbf{r} \mathbf{r}$$

$$P = \frac{V^{r}}{R} \Rightarrow \dots = \frac{(rr)^{r}}{R} \Rightarrow R = \frac{(rr)^{r}}{\dots}$$

$$P' = \frac{V'^{r}}{R} \Rightarrow P' = \frac{(11)^{r}}{\frac{(rr)^{r}}{1..}} = \dots \times \frac{(11)^{r}}{(rr)^{r}} = \dots \times \frac{1}{r} = r \wedge W$$

$$P' = V'I' \Rightarrow r \wedge = \dots \times I' \Rightarrow I' = \frac{r \wedge}{11..} A$$

$$q = I't \Rightarrow q = \frac{r \wedge}{11..} \times \dots = \frac{r \wedge}{1..} = r/\wedge Ah$$

گزینهی ۴ پاسخ صحیح است. دو مقاومت ۵ اهمی با هم موازی و چهار مقاومت ۵۰ اهمی نیز با هم موازی و مجموعهی آنها با هم سری هستند.

$$R_{T} = \frac{\Delta}{r} + \frac{\Delta}{r} = r/\Delta + r/\Delta = r\Delta \Omega$$
$$I = \frac{\epsilon}{R+r} = \frac{r\varphi}{r\Delta + r} = rA$$
$$P_{r} = r = rI^{r} = r \times r^{r} = rW$$