CS 188x: Artificial Intelligence

Search

Dan Klein, Pieter Abbeel

University of California, Berkeley

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
= Depth-First Search

= Breadth-First Search
= Uniform-Cost Search

Agents that Plan

Reflex Agents

= Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= Can areflex agent be rational?

[demo: reflex optimal / loop]

Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= QOptimal vs. complete planning

= Planning vs. replanning

[demo: plan fast / slow]

Search Problems

= A search problem consists of:

g . [.1.11.["

= A successor function N’ 1.0
(with actions, costs) —
—

HEII' 1.0

= A start state and a goal test

= Asolution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= (Cities
= Successor function:

= Roads: Go to adjacent city with
s - cost = distance

= Start state:
= Arad
= Goal test:
= |sstate == Bucharest?

Eforie

= Solution?

What’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing = Problem: Eat-All-Dots
= States: (x,y) location = States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
= Successor: update location = Successor: update location
only and possibly a dot boolean
= Goal test: is (x,y)=END = Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing?
120
= States for eat-all-dots?
120x(23°)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs

—

= State space graph: A mathematical
representation of a search problem

M

‘ E
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

l

= The goal test is a set of goal nodes (maybe only one)

= |n a search graph, each state occurs only once! u

l

TN
e

-

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

~ / N/

«—
—

a o
B B
F!
=

State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations

= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only one)

In a search graph, each state occurs only once!

We can rarely build this full graph in memory

] i)) Tiny search graph for a tiny
(it’s too big), but it’s a useful idea search problem

Search Trees

! _ This is now / start
"N"‘,]..O/ “E”, 1.0
n u _ Possible futures

= Asearch tree:
= A “what if” tree of plans and their outcomes
= The start state is the root node
= Children correspond to successors
= Nodes show states, but correspond to PLANS that achieve those states
= For most problems, we can never actually build the whole tree

State Graphs vs. Search Trees

/ State Graph \

Each NODE in in
the search tree is
an entire PATH in
the problem graph.

We construct both
on demand — and
we construct as
little as possible.

-

— e ————
h r

~

Search Tree

p q f
; —
q

c
a

Quiz: State Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Search Example: Romania

Arad])

I8

Eforie

Searching with a Search Tree

Arad
s TimisnaD <>

> G o> @D

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function I'nrn-Sparci(problem. strategy) returns a solution, or failure
initialize the search tree using the initial state of probiem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

® |mportant ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

10

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

11

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

Space complexity? [1 node
b nodes
Cartoon of search tree: b2 nodes
= bis the branching factor m tiers <
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b2+..b™m=0(b™)

Depth-First Search (DFS) Properties

What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
Is it complete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

Is it optimal?
= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search

Tiers

13

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

= Processes all nodes above shallowest solution 1 node
= Let depth of shallowest solution be s ’ b nodes
s tiers
= Search takes time O(b%) b2 nodes
How much space does the fringe take? b® nodes
= Has roughly the last tier, so O(b®)
b™ nodes

Is it complete?
= s must be finite if a solution exists, so yes!

Is it optimal?
= Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[demo: dfs/bfs]

14

Iterative Deepening

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= |sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

15

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

® 1
R e '
Q4@ .5 W17 (O M @@ 16
" AN
.5 a @13‘7 p q f
| FEN
p q ‘8 9 ¢ oc
q 11@ © 10 a

a

16

Uniform Cost Search (UCS) Properties

What nodes does UFS expand?
= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least £, then the
u : ” s F
effective depth” is roughly C*/¢ C¥e “tiers”
* Takes time O(b¢"4) (exponential in effective depth)

How much space does the fringe take?
= Has roughly the last tier, so O(b<"%)

Is it complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?
= Yes! (Proof next lecture via A*)

Uniform Cost Issues

Remember: UCS explores increasing cost
contours

The good: UCS is complete and optimal!

The bad:
» Explores options in every “direction”
* No information about goal location Goal

We'll fix that soon!
[demo: search demo empty]

17

The One Queue: Priority Queues

= All these search algorithms are the same except for fringe strategies

= Conceptually, all fringes are priority queues (i.e. collections of nodes with

attached priorities)

= Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual

priority queue with stacks and queues

= Can even code one implementation that takes a variable queuing object

Search and Models

= Search operates over
models of the world
= The agent doesn’t

actually try all the plans
out in the real world!

= Planning is all “in
simulation”

= Your search is only as
good as your models...

18

Search Gone Wrong?

ARCTIC OCEAN

S e
', MapPoint

ICELAND

Start: Haugesund, Rogaland, Norway
End: Trondheim, Ser-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

CS 188x: Artificial Intelligence

Informed Search

Dan Klein, Pieter Abbeel

University of California, Berkeley

10

