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Abstract
For any positive integer r, the r-Fubini number with parameter n, denoted by F}, ,,
is equal to the number of ways that the elements of a set with n + r elements can be
weakly ordered such that the r least elements are in distinct orders. In this article we
focus on the sequence of residues of the r-Fubini numbers modulo an arbitrary positive
integer s and show that this sequence is periodic and then, exhibit how to calculate its
period length.

1 Introduction

The Fubini numbers (also known as the ordered Bell numbers) form an integer sequence in
which the nth term counts the number of weak orderings of a set with n elements. Weak
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ordering means that the elements can be ordered, allowing ties. Cayley [2] studied the Fubini
numbers as the number of a certain kind of trees with n + 1 terminal nodes. The Fubini
numbers can also be defined as the sum of the Stirling numbers of the second kind, {Z}, which
counts the number of partitions of an n-element set into & non-empty subsets. The sequence
of residues of the Fubini numbers modulo a positive integer s was studied by Poonen [6].
He showed that this sequence is periodic and calculated the period length for each positive
integer s.

The r-Stirling numbers of the second kind are defined as an extension to the Stirling
numbers of the second kind, in which the first r elements contained in distinct subsets.
Similarly the r-Fubini numbers, which are denoted by F,,,, are defined as the number of
ways which the elements of a set with n + r elements can be weakly ordered such that the
first r elements are in distinct places. Consider the sequence of remainders of [}, , modulo
an arbitrary number s € N in which r is fixed, which is denoted by A, . One can study
the periodicity problem for this sequence. Mez6 [4] investigated this problem for s = 10.
In this article w(A,s), the period of A, ;, is computed for any positive integer s. Based
on the fundamental theorem of arithmetic, w(A, ) is calculated for powers of odd primes
p™. The cases s = 2™ are studied separately. Therefore if s = 2mp"p™ .- p/™* is the
prime factorization, then the w(A4;.s) is equal to the least common multiple of w(A, = )s and
wW(Apam), fori=1,2,... k.

Section 2 contains the basic definitions and relations. The length of the periods in the
case of odd prime powers are computed in the Section 3. The similar results about the 2
powers are stated in the Section 4. The last section contains the final theorem which presents
the conclusion of the article.

2 Basic concepts

Let {Z} be the Stirling number of the second kind with the parameters n and k and let
{Z}T be the r-Stirling number of the second kind with parameters n and k. It is clear that
n > k > r. Fubini numbers are computed as follows [4]:

. n
F, = k! .
> uli]
k=0
In a similar way we can evaluate the r-Fubini number F;, , by

- n+r
F,. = ! .
r Z(k—ir?“) {k—i—r}r

k=0



There are simple relations and formulae about {Z}r which are listed below. One can find a
proof of them in [1, 4, 5] and [3, Thm. 4.5.1, p. 158].

;}TI {Z}H—(r—l){n;l}HJ <r<n (1)

(o} - S (e ()

By ¢(n) we indicate the number of positive integer numbers less than n and co-prime
to it. It is known as Euler’s totient function. The value of ¢(n) can be computed via the
following relation [3, Example 4.7.3, p. 167]:

1
p(n) = ng(l —)

3 The r-Fubini residues modulo prime powers

Let p be a prime number greater than 2 and m be a positive integer. If (F,,) denotes the se-
quence of r-Fubini numbers for a fixed positive integer r, we indicate by A, , = (F,,(mod ¢)),
for n € N, the sequence of residues of the r-Fubini numbers modulo the positive integer q.
In this section we try to compute the period length of the sequence A, , when ¢ = p™. This
length is denoted by w(A4, ).

Proposition 1. Let p be an odd prime and let ¢ = p™, m € N. If ¢ <r, then w(A,,) = 1.

Proof. The proof is very simple. Since p < r, we can deduce that p | (k+r)!, for £ > 0, and

by the relation F,, = > ,_(k+7)! ZI:}T, we have p | F), . Therefore w(A4,,) = 1. O
As pointed out in the above proposition, it is sufficient to investigate the period length

in the cases of ¢ > r.

Lemma 2. Let p be an odd prime and r,m € N with p > r+ 1. Then

P —1r>m.



Proof. For m = 1 the result is obvious. Suppose the inequality holds for any m > 2. Since
p(p+m) > 2(p+m) > 2p+ m, we have

P’ +pm—p>p+m. (7)

Since p — 1 > r, the induction hypothesis can be reformulated to p™ > p — 1 + m. Multipli-
cation by p results p" ™! > p? + pm — p. By (7) we have p™™ > p+ (m +1) — 1. O]

Theorem 3. Let p be an odd prime and ¢ = p™. After the (m — 1)th term the sequence
Ay g has a period with length w(A,q) = ¢(q). In other words, F,ioq)r = Fn, (mod q), for
n>m-—1.

Proof. f n > q—r — 1 we can write

n+¢(q) n
n+e(q) +r n+r
Fuvotyr = Fur = ) (]Hr)!{ k+r } _Z(k+r)!{k+r}

k=0 k=0
R (i) -(0))
<5 S () (G

If j = cp, ¢c €N, then j°! = (¢p)?" " for some h > 0, so from Lemma 2 it follows that
"1 =0 (mod q). If ged(4,q) = 1, by Euler’s theorem j¥@ — 1 = 0 (mod q), so the right
hand side of the above congruence relation vanished and we have

Fotpigyr = Fnp (mod q), forn>q—r—1 (8)

Ifm—-1<n<q—r—1then

B :__ n+o(q) +r _fn+r
Fristor = Far = 2 (k1) <{ ktr } {kw})

k=0
qg—r—1 g-r—-1
n+p(q) +r ntr
_ k ! k !
( H){ k+r } gy H){’HT}
—ntp(a)+ "ok=ntl '
—r—1 k+r :
Z Z )t J(/{—i—r)jm—l ((] - 1)!) (j9@ —1)
= = 7 (] ’I“).
q—r—1 n—i—g&(q) s q—r—1 n4r
Y e be S aen{l T oy
k=n-+p(q)+1 ktr " k=ntl e '



Since n > m— 1, in the indices where j = cp, ¢ € N, we have j" = (cp)™ ™, for some h > 0,
and it is deduced that j”*' = 0 (mod ¢). When ged(j, ¢) = 1, again j¥ — 1 =0 (mod )
) —r—1 n-+r —r—1 n T
by Euler’s theorem. In the sums Y {7 "0 (k + )31} and Y3077 0 (B +7)! +fi"3+ I,
the upper parameter of the r-Stirling number is less than the lower one, and therefore these

two sums are equal to zero. So

B q—r—1 k+r ktr—j k‘ +r n+1 (] - 1)‘ 'SO(C]) .
Foto@yr = Fnr = Z Z(_l) . )J . . (799 —1) =0 (mod q),

k=0 j=r J
and therefore
Fotggyr = Fnp  (mod g) form —1<n<qg—7r—1. (9)

Combining results (8) and (9) gives F,1p(q)r = Fn,r (mod q), for n > m — 1. O

4 The r-Fubini residues modulo powers of 2

As in many other computations in number theory, the case of p = 2 has its own difficulties
that require special attention. In the case of powers of 2, initially we calculate the residues of
2-Fubini numbers and then use the results in the case of the r-Fubini numbers. We classify
the sequence of remainders of 2-Fubini numbers modulo 2™, m > 7, in Theorem 6 and then,
work on remainders of the r-Fubini numbers modulo 2™, m > 7 in Theorem 9. The special
cases will be proved in Theorems 4, 7 and 8. The trivial cases in which 2™ < r with period
length 1 are omitted.

Theorem 4. If 3 < m < 6, then after the (m — 1)th term the sequence Asom has a period
with length w(Agam) = 2.

Proof. By using the formula F, o = >, _(k + 2)'{2:’;}2 we prove that Fji90 — Fo =
0 (mod 64). Then F, 122 — F,2 =0 (mod 2™) for 3 <m < 5.

n+2 n
n-+4 n -+ 2
Fraas = Fua =2 (b + 2)!{k + 2}2 ke 2>!{k + 2}2

w2 (1o}, {ive),)

k2
(k2N . ,
(—1)F+2 j( j )] T2 =1 —1) (mod 64).
k=0 j—2

Il
Bl
ot Htvjm
o

In the case m = 6 then n > 5, so if j is even, then ;"' = (2¢)%™ for some h > 0 and
therefore 64 | 771, For odd j we have ged(j,64) = 1, so by Euler’s theorem we have



7% =1 (mod 64), and therefore ;32 = j7*1 (mod 64). This implies that

5 |(k+1)/2]

k2 .
Fryas — nz_z Z 1)F+2 2’“)<2l+1>(2l+1) F(2L41)2—1) x 2

5 [(k+1)/2]
k2 I +1
( + )(21+1)”+1 <¥>l (mod 64).

=16 (- Y o

k=0 =1

Enumerating the last summation for 2 < n < 33 shows that it is divisible by 64 and because
of periodicity of remainders of j7*! modulo 64, the result follows. m

Analogous to Lemma 2, it can be easily deduced by induction, showing that for each
positive integer m > 1 we have

2" 2 >m . (10)

This can be shown by using the relation 2™ > 2m +4 > m + 3, for m > 1. The following
lemma provides a simple but essential relation used in the next theorem. Its proof is provided
in Appendix A.

Lemma 5. Form > 7 and 5 <1i < 2™ % we have 26 — ¢ | 205 (2m_.6’1).

7

Theorem 6. If m > 7, after the (m — 1)th term, the sequence Asom has a period with length
(U(Azgm) = 2m76‘

Proof. In the case of n > 2™ — 3, from (10) we can deduce that n > 2™ —3 > m — 1. So we
have

n+42m—"6 _ n
n+2m642 n+2
Foome6qg—F o= E k+ 2)! —E k+ 2)!
n42m—62 n,2 (k+ ){ k42 }2 ( + ){k+2}2

k=0 k=0
:2§3<k+2)' ({n+2m—6+2} - {n+2} )
- = ' k+2 , |k+2),
2m 3 k42
= v (TG g1 a2
k=0 j=2 J

When j is even, then j"! = (2¢)2" -2+ for some h > 0. So by (10), 2™ | j°L. For odd j
we have



om_3 |(k+1)/2]

k + 2 m—6
B k+2 (20+1) n+1 gm—6
Fopoms5— Fog = Z Z <2z+1>(2l+1> (214 1) 1) x 21
2m 3 [(k+1)/2] m—=6
_ k+ 2 (2[ + 1)2 -1
= om 4 -1 k+1 21 1 n+1 l
SIS M Ee C
k=0 =1
om 3 L(k+1)/2] gm—6 -
_ k+2 i [ (2mTE =1
= 9m 4 -1 k+1 2 1 n+1 igi 1
;( 2 (2z+ 1>( LTy (z’!(2m6 )
=0 =1 =1
x [ (mod 2™)

The last expression contains m — 4 factors of 2, so it is sufficient to prove that the last
summation is divisible by 16. This summation is denoted by S. Simplify the summation

mel * ligi- 1% and using Lemma 5 gives

ioi— 2m6_1 ii— 2m6_1 m—
212 1<—Z'2m6_2> 212 1(—Z|2m6 ))')El—i-lZ(Q 6_1)

. B x 2(2m~ 6—31)(2m 6 2) +l (276 — 1)(2m36—2)(2m6—3)

Assume m > 10 (the case 7 < m < 9 is studied at the end of the proof). So 16 | 2™76. Let
3a =2(2m5—1)(2m°% —2) and 3b = (2m76 — 1)(2m6 — 2)(2™% — 3). Then 3a = 4 (mod
16) and 3b = —6 (mod 16). Therefore a = —4 (mod 16) and b = —2 (mod 16). So the proof
continues as follows:

(mod 16).

k+2

[(k+1)/2]
(21 +1

2m—3
S=) (- Y
k=0 =1

[(k+1)/2]

szg—l)’f“ > () e () oo moas)

=1

)(2z + )" =12 — 4 - 21" | (mod 16)

Let P(l) and A(k,r,n) be the remainder of (20 + 1)"™(I(I + 1))(—2{* — 2/ + 1)l and

Yoo (;}ﬁ)P(Z) divided by 8, respectively. By Pascal’s identity, we have (Zﬁ) = (flilr) +

(Qlitil) and therefore
P = PU P(i
’;”(QZJFT) v l;>o<21+r> ()+l§o<2l+r—1) )
SO

A(k,r,n) = Ak —1,r,n)+ A(k — 1,r — 1,n). (11)
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We can write

o0

A(k,r+32,n)zz< b2 )P(l) (mod 8).

= 20+7r+ 32
The sequence (P(1)),2 _ has period 16, so P(l + 16) = P(l). Set I’ = + 16, then

= (k42
Ak,r+32,n) = Y <2l’+r
l/'=—00

)P(l’) = A(k,r,n) (mod 8). (12)

Since ged(2] 4+ 1,16) = 1, Euler’s theorem implies (20 + 1)® = 1 (mod 16) and therefore
(20 + 1)+ = (2l + 1)"* (mod 16). The quantity A(6,7,n) vanishes for 1 < r < 32 and
9 < n < 24, by enumeration, then by (11) and (12), we deduce that

A(k,r,n) =0, for k > 6. (13)

Therefore

(e}

Ak, 1,n) = l;oo (Zjﬁ) (21 + 1)+ (@) (=212 — 21+ 1)1

L(k+1)/2] (/{: 19

ol + 1) (20 + 1)"*! (@) (=2 =21+ 1)l =0 (mod 8),

for k>6. If1<k<59<n<2and 1 <r <32wehave S0 (—1) 1 A(k,7,n) =
0 (mod 8). The period length of A(k,r,n) with respect to r and n implies that

D A(k,1,n) =0 (mod 8), for n > 9.

Mm

k:l
Combining this with (13) we have

2m—3

S = Z DAk, 1,n) =0  (mod 8), for n > 0.



So the result follows in the case of n > 2™ — 3. If m — 1 <n < 2™ — 3 we can write

n+42m—"6 _ n
n+42m"%49 n+2
Foiom-o9— Fpo= E (k+m% }2_§<k+m{k+2h

k=0 b2 k=0
_ 2§3(k +2)! ({” +2m70 2} B {n+ 2} )
k=0 k +2 2 k +2 2
2" 3 2m_3
n+2m0 42 n+2
-y (k+%{ }4—§:(h+m% }
k=n+2m—641 k+2 2 k=n4+1 k+2 2
2™ —3 k+2
k42 s
= Z Z(_l)k+2—]< j )jn-‘rl(jQ 6 o 1)(] . 1) (mod 2m)

k=0 j=1

When j is even, then j"! = (2¢)™" for some h > 0, so 2™ | "1, Since m > 10, for odd j

we have
2M—3 k+2
CEH2\ o o .
E:E:Fifﬁj( .>J+%f DG -1)
k=0 j=1 J
2m—3 L0200
=2m Z (—1)k+1 Z (21 n 1) (20 + 1)1 — 1 — 41* — 21" (mod 2™).

k=0 =1

The last summation is exactly the S and the proof will be similar as above. Combine with
the previous case we have the following congruence relation
(14)

Foiom-69=F,o (mod 2™), for m > 10.

In the case where 7 < m < 9, the remainder value of the sum

2m—3 [(k+1)/2] 4 _
k+2 o (2mTE—)!
-1 k+1 2l 1 n+1 19t 1\= ) l
Z ( ) Z (2[ + 1)( + ) (zzl Z'!<2m—6 _ Z)'

k=0 =1
modulo 16 is computed for m —1 < n < m+ 14. Divisibility of all these values by 16 implies

that the recent sum is divisible by 16, and therefore

(mod 2™), for 7 <m < 9. (15)

Fojom—65 = Fpo

Summing up the congruence relations (14) and (15) gives

w(Aggm) =2""°% form > 7.



Theorem 7. For m =1 and m = 2, the sequence A, om is periodic from the first term and
the period length is w(A, om) = 1.

Proof. The proof of this theorem is divided into three cases. For r = 2 we have

n

n+1
n—+3 n—+ 2
_ — | — |
Froji2— oo E (k:+2).{k+2}2 E (k+2).{k+2}2

k=0 k=0

2({n;3}2_{n;2}2> _’_6({71—;3}2_{”;2}2) (mod 4)
— 2 (2" —2") 46 (3" — 2t — (3 —2))

— 2n+1 4 6(2 x 3" — 2n) _ 4(2n—1 4 3n+1 —3x 2n—1)
= 4(3" —2") =0 (mod 4).

So we can deduce that w(As4) = 1 and obviously w(As») = 1.
For r = 3 we can write

n+1 n
n+4 n—+3
Fri1s = Fus :Z(k+3)!{k+3}3 B Z(k+3>!{k+3}3

k=0 k=0
4
({13, 57)) e
3 3 3 3
=6 (3" —3") =6 x2x3"=4x3""" =0 (mod 4).

Therefore we have w(As4) =1 and w(Az,) = 1.
Finally if » > 4, let » = 4 + h, for some h > 0, then

n+1 n
n+1+r n+r
F, T—Fm_—g k+r)! —E k+r)! .
o ’ k0< r){ k+r }T k[)( r) {k—i—T}T

Since 4 | (k+r)!, for all k > 0, we can write F,41,—F,, = 0 (mod 4). Therefore w(4,,) =1
and w(4,) = 1. O

Theorem 8. If 3 < m < 6, after the (m — 1)th term, the sequence A,am has a period with
length w( A, om) = 2.

Proof. The proof of this theorem is similar to the proof of Theorem 4. It is enough to prove
the theorem for m = 6; then the result follows for m = 3,4 and 5. Since n > m — 1, then
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for m = 6 we have n > 5. For 3 < r <7 we have

n+2 n
n+2+r n+r
<&H¢—ﬂ¢:§]k+ﬂ% k+r} —§3k+m%k+r}

S (oo 23)
= gg(—l)kw—j (k ;r T)jn+1(j2 -1 —-1) (8 - i;:) (mod 64).

When j is even, then j"*1 = (2¢)5*", for some h > 0, and so 64 | j**!. For odd j we have
ged(7,64) = 1 and Euler’s theorem gives 532 = 1 (mod 64). Therefore j7 ™32 = j7*1 (mod
64), and we can write

o (P - 6 - g

-

—r k+r

=~
Il

0 j=r
7—r [(k+r—1)/2]

= Z (_1)k+r—(2l+1) (k + T') (2l + 1)n+1((2l + 1)2 . 1) % 9] (Ll)')

<

— )l
oy 20+1 (2l+1—r)!
T—r [(k+r—1)/2]
. k4r i1+ 1) (21— 1)1
_ k+r—1 nt+l 2\ 7 7/ [ S —
=16 kEO(—l) l_% . (21 N 1) (20+1) ( ) ) [ ((2l gy (mod 64).

By computation we see that the recent summation is divisible by 4, for 2 < n < 33. So the
proof for 3 < r < 7 is completed.
If r > 8, since 64 | 8!, then 64 | (k + r)!, and

n+2 n
2
Foyor — Foyr = Z(k + r)!{n e r} — Z(k + r)!{n i T} =0 (mod 64),

prt k+r — k+r

50 w(A, 26) = 2, for r > 8, and the proof is completed. ]

Theorem 9. If m > 7, after the (m — 1)th term, the sequence A, om has a period with length
L(J(Ar’gm) = 2m—6.

Proof. The proof of this theorem is similar to the proof of Theorem 6. In the case of

11



n>2"—r—1and r > 8 we have

n4-2m—6 _ n
om 6
Frignoy = Fop= 3 (k+r)!{”+ ”} _ (k+r)!{”+r}
r k r

—~ k+r — k+r
om_p_q
n42m6 4 n+r
= k ! —
,; (k1) ({ kit } {kw}r
2M —pr—1 k+r . |
= 3 S (P g oy (V2B a0,
= = J (=)

In the case of 2™ > r > 2™ — m, since m > 7 this implies that r > 2™ —m > 271 so
2" | (2™ Y| (k+7)!, for each k > 0.

Therefore both summations in the above first equation are zero modulo 2™ and in this
case W(A,gm) = 2™75 When r < 2™ — m, if j is even then j"*' = (2¢)?" " for some
h > 0. So 2™ | j#*'. For odd j we have (j,2"7%) = 1, and 2% | j2"° — 1 by Euler’s

theorem. Since r > 8 we can write 8:3: = (8:5;:) HZ:1(j — ). Therefore 32 | 8:3: and
m om—6 i—1)!
2m | (2 1) (U2).

In thecaseof m —1<n<2™ —r —1 and r > & we have

n+2m—"6 _ n
n+2m 64 r n+r
Fopom-6, — Fyp = E (k‘—l—?”)'{ k+r }T_ E (k?—i—?“)'{ }T

k=0 k=0 b
=LA
_ Qmi_l (/f+r)!{n+§n:i+r}+2mi_1(k+r)!{:;j::} (mod 2™)
k=n42m—641 k=n+1
eI )

and the proof proceeds as in the previous case. In the case of 3 < r < 7 one can deduce
similarly to the proof of Theorem 6 that

2mM—p—1 k+r ' k’—l-?" » (j—l)'
From-sy — Fop= Y Z(—D’“*”( , )j"“(ij —1)< : ) (mod 2™).

— )l
= = J (=)

Exactly the same as Theorem 6, the terms with even j vanish and only the terms with odd

12



J remain. So we have

om_p_1 | (k4+r—1)/2]

Z Z (_1)k+r7(2l+1) (2]{;[—:_2) (2l + 1)n+1((2l + 1)2”1*6 _ 1)

Fn+2m—6,r - Fn,r

k=0 i=[r/2]
(20 +1) — 1)
X
(2L+1)—n)!
2m -1 (ktr=D/2) L
= 2m—5 -1 k+r—1 2l 1 n+1
S o 2 (e
k=0 I=|r/2]

(Z 2 (i )) () a2

Since ged (21 + 1,16) = 1, Euler’s theorem shows that (20 + 1)"™*8 = (2] + 1)"™! (mod 16).
If m > 10, we have

2m —p—1 [(k+r—1)/2]
. Z . k+r I(1+1)
m—4 k—H“ 1 n+1
nam=sy = by =2 Z (21 >(21 1 ( 2 )

I=|r/2]
x (—21* — 21 + 1) (%) (mod 2™).

Therefore it is sufficient to compute the above summation (without factor 2™) for 3 < r <7
and 9 < n < 16 to show that it is divisible by 16.
For 7 < m <9 we evaluate the sum

2m _pr—1 L(k—‘r’l‘ 1 /2J om—6 —
St Y k + ) Z jigi-1 (2 o —1)! (20)!
20 + z'2m6 )P\ (2l —r+1)!
k=0 1=|r/2]
for m—1 < n < m+6 to show that it is divisible by 32. Then it follows that w(A, om) = om=6
forall m > 7. O]

5 The conclusion

We now state the final theorem, which shows how to compute w(A4, ;) for any s € N.

mi

Theorem 10. Let s € N and s > 1 with the prime factorization s = 2™mp|™ p2 Dy and
let D={p" |p;" >r,1<i<k}. Define E={m;—1|p/" €D}, F={pp")|p" €D}
and a = maX(E U{m — 1}) and let b be the least common multiple (lem) of the elements of
E. Then

b, if0<m<2o0r2m<vr;
w(A,s) = ¢ lem(2,0), if3<m<6and2™ >r ; (16)
lem(2™7%b), ifm > 7 and 2™ > r,

13



and periodicity of the sequence A, s is seen after the a-th term.

Proof. Let [ be the right hand side of (16). For each d € D U {2™}, w(A,4) | [ and for each
p;-nj ¢ D such that 1 < j <k, we have 1 = w(ATpmj) | 1, so

Fn+l,r = Lnyr (mOd 2m)
Fn+l,TEFn,r (mOd pzm), for ¢ = 1,2,...,/{).

Since ged (2™, pi™, py?,...,pp*) = 1, the multiplication of all above congruence relations
gives the required result. O
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A  Proof of Lemma 5

After simplifying the lemma’s relation we have

215 (2" PT1) 9im5(gm=6 _ 1)(gm=6 _9)...(2m=6 _; 4+ 1)
il = : : (17)
om—6 _ 4 7!

It is sufficient to show that the right hand side of (17) is integer. We know that (QmeG) €N,
ie.,

il | 2m6(2m=6 —1)... (2™ — i 4 1).

If O; denotes the product of the odd factors of i!, since (O;,2™75) = 1, then O, | (2™75 —
1)--+ (2™ % —4+1). Soin (17) we only need to prove that

vp(2075(2m70 — 1)(2m70 —2) - (2770 — i+ 1)) > wy(d),

where by v5(2) we mean that 2*2(®) | z, but 22@+! 4 2 Let A = 1p((2m 6 — 1)(2m 6 —
2)--- (2™ —4+41)) and B = 15(i!). Let e be the unique integer such that 2¢ <1 < 2¢7!. So

e (18)

If we show that

B-—A<e (19)



then the lemma is concluded if it is proved that
i+A>DB+5. (20)

It can easily be shown that B = 1,(i!) and A = v»((i — 1)!), so B — A = 1»(i). Since
2¢ < i < 2°1) therefore 15(i) < e and (19) follows. For e = 2, integer possibilities for
inequality (20) are as follows:

A| B
313
314
4|4

| o ot =.

For e > 3 one can deduce by simple induction that
2¢° > e+ 5,

soi>2°>e+5. Add B — e to these inequalities and use (19) demonstrates (20) for i > 8.
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