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Abstract

For any positive integer r, the r-Fubini number with parameter n, denoted by Fn,r,

is equal to the number of ways that the elements of a set with n + r elements can be

weakly ordered such that the r least elements are in distinct orders. In this article we

focus on the sequence of residues of the r-Fubini numbers modulo an arbitrary positive

integer s and show that this sequence is periodic and then, exhibit how to calculate its

period length.

1 Introduction

The Fubini numbers (also known as the ordered Bell numbers) form an integer sequence in
which the nth term counts the number of weak orderings of a set with n elements. Weak
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ordering means that the elements can be ordered, allowing ties. Cayley [2] studied the Fubini
numbers as the number of a certain kind of trees with n + 1 terminal nodes. The Fubini
numbers can also be defined as the sum of the Stirling numbers of the second kind,

{

n
k

}

, which
counts the number of partitions of an n-element set into k non-empty subsets. The sequence
of residues of the Fubini numbers modulo a positive integer s was studied by Poonen [6].
He showed that this sequence is periodic and calculated the period length for each positive
integer s.

The r-Stirling numbers of the second kind are defined as an extension to the Stirling
numbers of the second kind, in which the first r elements contained in distinct subsets.
Similarly the r-Fubini numbers, which are denoted by Fn,r, are defined as the number of
ways which the elements of a set with n + r elements can be weakly ordered such that the
first r elements are in distinct places. Consider the sequence of remainders of Fn,r modulo
an arbitrary number s ∈ N in which r is fixed, which is denoted by Ar,s. One can study
the periodicity problem for this sequence. Mező [4] investigated this problem for s = 10.
In this article ω(Ar,s), the period of Ar,s, is computed for any positive integer s. Based
on the fundamental theorem of arithmetic, ω(Ar,p) is calculated for powers of odd primes
pm. The cases s = 2m are studied separately. Therefore if s = 2mpm1

1 pm1

1 · · · pmk

k is the
prime factorization, then the ω(Ar,s) is equal to the least common multiple of ω(Ar,p

mi
i
)s and

ω(Ar,2m), for i = 1, 2, . . . , k.
Section 2 contains the basic definitions and relations. The length of the periods in the

case of odd prime powers are computed in the Section 3. The similar results about the 2
powers are stated in the Section 4. The last section contains the final theorem which presents
the conclusion of the article.

2 Basic concepts

Let
{

n
k

}

be the Stirling number of the second kind with the parameters n and k and let
{

n
k

}

r
be the r-Stirling number of the second kind with parameters n and k. It is clear that

n ≥ k ≥ r. Fubini numbers are computed as follows [4]:

Fn =
n
∑

k=0

k!

{

n

k

}

.

In a similar way we can evaluate the r-Fubini number Fn,r by

Fn,r =
n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

.
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There are simple relations and formulae about
{

n
k

}

r
which are listed below. One can find a

proof of them in [1, 4, 5] and [3, Thm. 4.5.1, p. 158].
{

n

m

}

r

=

{

n

m

}

r−1

− (r − 1)

{

n− 1

m

}

r−1

, 1 ≤ r ≤ n (1)

{

n

m

}

1

=

{

n

m

}

(2)

{

n+ r

r

}

r

= rn (3)

{

n+ r

r + 1

}

r

= (r + 1)n − rn (4)

{

n

m

}

=
1

m!

m
∑

j=1

(−1)m−j

(

m

j

)

jn (5)

{

n

m

}

r

=
1

m!

m
∑

j=r

(−1)m−j

(

m

j

)

jn−(r−1)

(

(j − 1)!

(j − r)!

)

. (6)

By ϕ(n) we indicate the number of positive integer numbers less than n and co-prime
to it. It is known as Euler’s totient function. The value of ϕ(n) can be computed via the
following relation [3, Example 4.7.3, p. 167]:

ϕ(n) = n
∏

p|n

(1−
1

p
).

3 The r-Fubini residues modulo prime powers

Let p be a prime number greater than 2 and m be a positive integer. If (Fn,r) denotes the se-
quence of r-Fubini numbers for a fixed positive integer r, we indicate by Ar,q = (Fn,r(mod q)),
for n ∈ N, the sequence of residues of the r-Fubini numbers modulo the positive integer q.
In this section we try to compute the period length of the sequence Ar,q when q = pm. This
length is denoted by ω(Ar,q).

Proposition 1. Let p be an odd prime and let q = pm, m ∈ N. If q ≤ r, then ω(Ar,q) = 1.

Proof. The proof is very simple. Since p ≤ r, we can deduce that p | (k+ r)!, for k ≥ 0, and
by the relation Fn,r =

∑n
k=0(k + r)!

{

n+r
k+r

}

r
, we have p | Fn,r. Therefore ω(Ar,p) = 1.

As pointed out in the above proposition, it is sufficient to investigate the period length
in the cases of q > r.

Lemma 2. Let p be an odd prime and r,m ∈ N with p ≥ r + 1. Then

pm − r ≥ m.
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Proof. For m = 1 the result is obvious. Suppose the inequality holds for any m ≥ 2. Since
p(p+m) > 2(p+m) > 2p+m, we have

p2 + pm− p ≥ p+m. (7)

Since p− 1 ≥ r, the induction hypothesis can be reformulated to pm ≥ p− 1 +m. Multipli-
cation by p results pm+1 ≥ p2 + pm− p. By (7) we have pm+1 ≥ p+ (m+ 1)− 1.

Theorem 3. Let p be an odd prime and q = pm. After the (m − 1)th term the sequence

Ar,q has a period with length ω(Ar,q) = ϕ(q). In other words, Fn+ϕ(q),r ≡ Fn,r (mod q), for
n ≥ m− 1.

Proof. If n ≥ q − r − 1 we can write

Fn+ϕ(q),r − Fn,r =

n+ϕ(q)
∑

k=0

(k + r)!

{

n+ ϕ(q) + r

k + r

}

r

−

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

≡

q−r−1
∑

k=0

(k + r)!

({

n+ ϕ(q) + r

k + r

}

r

−

{

n+ r

k + r

}

r

)

≡

q−r−1
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1

(

(j − 1)!

(j − r)!

)

(jϕ(q) − 1) (mod q).

If j = cp, c ∈ N, then jn+1 = (cp)q−r+h, for some h ≥ 0, so from Lemma 2 it follows that
jn+1 ≡ 0 (mod q). If gcd(j, q) = 1, by Euler’s theorem jϕ(q) − 1 ≡ 0 (mod q), so the right
hand side of the above congruence relation vanished and we have

Fn+ϕ(q),r ≡ Fn,r (mod q), for n ≥ q − r − 1. (8)

If m− 1 ≤ n < q − r − 1 then

Fn+ϕ(q),r − Fn,r ≡

q−r−1
∑

k=0

(k + r)!

({

n+ ϕ(q) + r

k + r

}

r

−

{

n+ r

k + r

}

r

)

−

q−r−1
∑

k=n+ϕ(q)+1

(k + r)!

{

n+ ϕ(q) + r

k + r

}

r

+

q−r−1
∑

k=n+1

(k + r)!

{

n+ r

k + r

}

r

≡

q−r−1
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1

(

(j − 1)!

(j − r)!

)

(jϕ(q) − 1)

−

q−r−1
∑

k=n+ϕ(q)+1

(k + r)!

{

n+ ϕ(q) + r

k + r

}

r

+

q−r−1
∑

k=n+1

(k + r)!

{

n+ r

k + r

}

r

(mod q).
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Since n ≥ m−1, in the indices where j = cp, c ∈ N, we have jn+1 = (cp)m+h, for some h ≥ 0,
and it is deduced that jn+1 ≡ 0 (mod q). When gcd(j, q) = 1, again jϕ(q) − 1 ≡ 0 (mod q)
by Euler’s theorem. In the sums

∑q−r−1
k=n+1(k + r)!

{

n+r
k+r

}

r
and

∑q−r−1
k=n+ϕ(q)+1(k + r)!

{

n+ϕ(q)+r
k+r

}

r
the upper parameter of the r-Stirling number is less than the lower one, and therefore these
two sums are equal to zero. So

Fn+ϕ(q),r − Fn,r ≡

q−r−1
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1

(

(j − 1)!

(j − r)!

)

(jϕ(q) − 1) ≡ 0 (mod q),

and therefore

Fn+ϕ(q),r ≡ Fn,r (mod q) for m− 1 ≤ n < q − r − 1. (9)

Combining results (8) and (9) gives Fn+ϕ(q),r ≡ Fn,r (mod q), for n ≥ m− 1.

4 The r-Fubini residues modulo powers of 2

As in many other computations in number theory, the case of p = 2 has its own difficulties
that require special attention. In the case of powers of 2, initially we calculate the residues of
2-Fubini numbers and then use the results in the case of the r-Fubini numbers. We classify
the sequence of remainders of 2-Fubini numbers modulo 2m, m ≥ 7, in Theorem 6 and then,
work on remainders of the r-Fubini numbers modulo 2m, m ≥ 7 in Theorem 9. The special
cases will be proved in Theorems 4, 7 and 8. The trivial cases in which 2m ≤ r with period
length 1 are omitted.

Theorem 4. If 3 ≤ m ≤ 6, then after the (m − 1)th term the sequence A2,2m has a period

with length ω(A2,2m) = 2.

Proof. By using the formula Fn,2 =
∑n

k=0(k + 2)!
{

n+2
k+2

}

2
we prove that Fn+2,2 − Fn,2 ≡

0 (mod 64). Then Fn+2,2 − Fn,2 ≡ 0 (mod 2m) for 3 ≤ m ≤ 5.

Fn+2,2 − Fn,2 =
n+2
∑

k=0

(k + 2)!

{

n+ 4

k + 2

}

2

−

n
∑

k=0

(k + 2)!

{

n+ 2

k + 2

}

2

≡
5
∑

k=0

(k + 2)!

({

n+ 4

k + 2

}

2

−

{

n+ 2

k + 2

}

2

)

≡
5
∑

k=0

k+2
∑

j=2

(−1)k+2−j

(

k + 2

j

)

jn+1(j2 − 1)(j − 1) (mod 64).

In the case m = 6 then n ≥ 5, so if j is even, then jn+1 = (2c)6+h, for some h ≥ 0 and
therefore 64 | jn+1. For odd j we have gcd(j, 64) = 1, so by Euler’s theorem we have
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j32 ≡ 1 (mod 64), and therefore jn+1+32 ≡ jn+1 (mod 64). This implies that

Fn+2,2 − Fn,2 ≡
5
∑

k=0

⌊(k+1)/2⌋
∑

l=1

(−1)k+2−(2l+1)

(

k + 2

2l + 1

)

(2l + 1)n+1
(

(2l + 1)2 − 1
)

× 2l

≡ 16
5
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

l (mod 64).

Enumerating the last summation for 2 ≤ n ≤ 33 shows that it is divisible by 64 and because
of periodicity of remainders of jn+1 modulo 64, the result follows.

Analogous to Lemma 2, it can be easily deduced by induction, showing that for each
positive integer m > 1 we have

2m − 2 ≥ m . (10)

This can be shown by using the relation 2m+1 ≥ 2m+ 4 > m+ 3, for m > 1. The following
lemma provides a simple but essential relation used in the next theorem. Its proof is provided
in Appendix A.

Lemma 5. For m ≥ 7 and 5 ≤ i ≤ 2m−6 we have 2m−6 − i | 2i−5
(

2m−6−1
i

)

.

Theorem 6. If m ≥ 7, after the (m−1)th term, the sequence A2,2m has a period with length

ω(A2,2m) = 2m−6.

Proof. In the case of n ≥ 2m − 3, from (10) we can deduce that n ≥ 2m − 3 ≥ m− 1. So we
have

Fn+2m−6,2 − Fn,2 ≡

n+2m−6

∑

k=0

(k + 2)!

{

n+ 2m−6 + 2

k + 2

}

2

−

n
∑

k=0

(k + 2)!

{

n+ 2

k + 2

}

2

≡
2m−3
∑

k=0

(k + 2)!

({

n+ 2m−6 + 2

k + 2

}

2

−

{

n+ 2

k + 2

}

2

)

≡
2m−3
∑

k=0

k+2
∑

j=2

(−1)k+2−j

(

k + 2

j

)

jn+1(j2
m−6

− 1)(j − 1) (mod 2m).

When j is even, then jn+1 = (2c)2
m−2+h, for some h ≥ 0. So by (10), 2m | jn+1. For odd j

we have
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Fn+2m−6,2 − Fn,2 ≡
2m−3
∑

k=0

⌊(k+1)/2⌋
∑

l=1

(−1)k+2−(2l+1)

(

k + 2

2l + 1

)

(2l + 1)n+1((2l + 1)2
m−6

− 1)× 2l

≡ 2m−4

2m−3
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

(

(2l + 1)2
m−6

− 1

2m−5

)

l

≡ 2m−4

2m−3
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

2m−6

∑

i=1

li2i−1

(

(2m−6 − 1)!

i!(2m−6 − i)!

)

× l (mod 2m).

The last expression contains m − 4 factors of 2, so it is sufficient to prove that the last
summation is divisible by 16. This summation is denoted by S. Simplify the summation
∑2m−6

i=1 li2i−1 (2m−6−1)!
i!(2m−6−i)!

and using Lemma 5 gives

2m−6

∑

i=1

li2i−1

(

(2m−6 − 1)!

i!(2m−6 − i)!

)

≡

4
∑

i=1

li2i−1

(

(2m−6 − 1)!

i!(2m−6 − i)!

)

≡ l + l2(2m−6 − 1)

+
l3 × 2(2m−6 − 1)(2m−6 − 2)

3
+

l4(2m−6 − 1)(2m−6 − 2)(2m−6 − 3)

3
(mod 16).

Assume m ≥ 10 (the case 7 ≤ m ≤ 9 is studied at the end of the proof). So 16 | 2m−6. Let
3a = 2(2m−6 − 1)(2m−6 − 2) and 3b = (2m−6 − 1)(2m−6 − 2)(2m−6 − 3). Then 3a ≡ 4 (mod
16) and 3b ≡ −6 (mod 16). Therefore a ≡ −4 (mod 16) and b ≡ −2 (mod 16). So the proof
continues as follows:

S ≡
2m−3
∑

k=0

(−1)k+1





⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1(l − l2 − 4l3 − 2l4)l



 (mod 16)

S ≡

2m−3
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

(−2l2 − 2l + 1)l (mod 8).

Let P (l) and A(k, r, n) be the remainder of 1
2
(2l + 1)n+1(l(l + 1))(−2l2 − 2l + 1)l and

∑∞
l=−∞

(

k+2
2l+r

)

P (l) divided by 8, respectively. By Pascal’s identity, we have
(

k+2
2l+r

)

=
(

k+1
2l+r

)

+
(

k+1
2l+r−1

)

and therefore

∞
∑

l=−∞

(

k + 2

2l + r

)

P (l) =
∞
∑

l=−∞

(

k + 1

2l + r

)

P (l) +
∞
∑

l=−∞

(

k + 1

2l + r − 1

)

P (l),

so

A(k, r, n) = A(k − 1, r, n) + A(k − 1, r − 1, n). (11)
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We can write

A(k, r + 32, n) ≡
∞
∑

l=−∞

(

k + 2

2l + r + 32

)

P (l) (mod 8).

The sequence (P (l))∞l=−∞ has period 16, so P (l + 16) = P (l). Set l′ = l + 16, then

A(k, r + 32, n) ≡
∞
∑

l′=−∞

(

k + 2

2l′ + r

)

P (l′) ≡ A(k, r, n) (mod 8). (12)

Since gcd(2l + 1, 16) = 1, Euler’s theorem implies (2l + 1)8 ≡ 1 (mod 16) and therefore
(2l + 1)n+1+8 ≡ (2l + 1)n+1 (mod 16). The quantity A(6, r, n) vanishes for 1 ≤ r ≤ 32 and
9 ≤ n ≤ 24, by enumeration, then by (11) and (12), we deduce that

A(k, r, n) = 0, for k ≥ 6. (13)

Therefore

A(k, 1, n) ≡
∞
∑

l=−∞

(

k + 2

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

(−2l2 − 2l + 1)l

≡

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

(−2l2 − 2l + 1)l ≡ 0 (mod 8),

for k ≥ 6. If 1 ≤ k ≤ 5, 9 ≤ n ≤ 24 and 1 ≤ r ≤ 32 we have
∑5

k=1(−1)k+1A(k, r, n) ≡
0 (mod 8). The period length of A(k, r, n) with respect to r and n implies that

5
∑

k=1

(−1)k+1A(k, 1, n) ≡ 0 (mod 8), for n ≥ 9.

Combining this with (13) we have

S ≡
2m−3
∑

k=1

(−1)k+1A(k, 1, n) ≡ 0 (mod 8), for n ≥ 0.
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So the result follows in the case of n ≥ 2m − 3. If m− 1 ≤ n < 2m − 3 we can write

Fn+2m−6,2 − Fn,2 =
n+2m−6

∑

k=0

(k + 2)!

{

n+ 2m−6 + 2

k + 2

}

2

−

n
∑

k=0

(k + 2)!

{

n+ 2

k + 2

}

2

=
2m−3
∑

k=0

(k + 2)!

({

n+ 2m−6 + 2

k + 2

}

2

−

{

n+ 2

k + 2

}

2

)

−

2m−3
∑

k=n+2m−6+1

(k + 2)!

{

n+ 2m−6 + 2

k + 2

}

2

+
2m−3
∑

k=n+1

(k + 2)!

{

n+ 2

k + 2

}

2

≡

2m−3
∑

k=0

k+2
∑

j=1

(−1)k+2−j

(

k + 2

j

)

jn+1(j2
m−6

− 1)(j − 1) (mod 2m).

When j is even, then jn+1 = (2c)m+h, for some h ≥ 0, so 2m | jn+1. Since m ≥ 10, for odd j

we have

2m−3
∑

k=0

k+2
∑

j=1

(−1)k+2−j

(

k + 2

j

)

jn+1(j2
m−6

− 1)(j − 1)

≡ 2m−4

2m−3
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1(l − l2 − 4l3 − 2l4)l (mod 2m).

The last summation is exactly the S and the proof will be similar as above. Combine with
the previous case we have the following congruence relation

Fn+2m−6,2 ≡ Fn,2 (mod 2m), for m ≥ 10. (14)

In the case where 7 ≤ m ≤ 9, the remainder value of the sum

2m−3
∑

k=0

(−1)k+1

⌊(k+1)/2⌋
∑

l=1

(

k + 2

2l + 1

)

(2l + 1)n+1

(

4
∑

i=1

li2i−1 (2m−6 − 1)!

i!(2m−6 − i)!

)

l

modulo 16 is computed for m−1 ≤ n ≤ m+14. Divisibility of all these values by 16 implies
that the recent sum is divisible by 16, and therefore

Fn+2m−6,2 ≡ Fn,2 (mod 2m), for 7 ≤ m ≤ 9. (15)

Summing up the congruence relations (14) and (15) gives

ω(A2,2m) = 2m−6, for m ≥ 7.
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Theorem 7. For m = 1 and m = 2, the sequence Ar,2m is periodic from the first term and

the period length is ω(Ar,2m) = 1.

Proof. The proof of this theorem is divided into three cases. For r = 2 we have

Fn+1,2 − Fn,2 =
n+1
∑

k=0

(k + 2)!

{

n+ 3

k + 2

}

2

−

n
∑

k=0

(k + 2)!

{

n+ 2

k + 2

}

2

≡ 2

({

n+ 3

2

}

2

−

{

n+ 2

2

}

2

)

+ 6

({

n+ 3

3

}

2

−

{

n+ 2

3

}

2

)

(mod 4)

= 2
(

2n+1 − 2n
)

+ 6
(

3n+1 − 2n+1 − (3n − 2n)
)

= 2n+1 + 6(2× 3n − 2n) = 4(2n−1 + 3n+1 − 3× 2n−1)

= 4(3n+1 − 2n) ≡ 0 (mod 4).

So we can deduce that ω(A2,4) = 1 and obviously ω(A2,2) = 1.
For r = 3 we can write

Fn+1,3 − Fn,3 =
n+1
∑

k=0

(k + 3)!

{

n+ 4

k + 3

}

3

−

n
∑

k=0

(k + 3)!

{

n+ 3

k + 3

}

3

≡ 6

({

n+ 4

3

}

3

−

{

n+ 3

3

}

3

)

(mod 4)

=6
(

3n+1 − 3n
)

= 6× 2× 3n = 4× 3n+1 ≡ 0 (mod 4).

Therefore we have ω(A3,4) = 1 and ω(A3,2) = 1.
Finally if r ≥ 4, let r = 4 + h, for some h ≥ 0, then

Fn+1,r − Fn,r =
n+1
∑

k=0

(k + r)!

{

n+ 1 + r

k + r

}

r

−
n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

.

Since 4 | (k+r)!, for all k ≥ 0, we can write Fn+1,r−Fn,r ≡ 0 ( mod 4). Therefore ω(Ar,4) = 1
and ω(Ar,2) = 1.

Theorem 8. If 3 ≤ m ≤ 6, after the (m − 1)th term, the sequence Ar,2m has a period with

length ω(Ar,2m) = 2.

Proof. The proof of this theorem is similar to the proof of Theorem 4. It is enough to prove
the theorem for m = 6; then the result follows for m = 3, 4 and 5. Since n ≥ m − 1, then

10



for m = 6 we have n ≥ 5. For 3 ≤ r ≤ 7 we have

Fn+2,r − Fn,r =
n+2
∑

k=0

(k + r)!

{

n+ 2 + r

k + r

}

r

−
n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

≡

7−r
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1(j2 − 1)

(

(j − 1)!

(j − r)!

)

≡
7−r
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1(j2 − 1)(j − 1)

(

(j − 2)!

(j − r)!

)

(mod 64).

When j is even, then jn+1 = (2c)6+h, for some h ≥ 0, and so 64 | jn+1. For odd j we have
gcd(j, 64) = 1 and Euler’s theorem gives j32 ≡ 1 (mod 64). Therefore jn+1+32 ≡ jn+1 (mod
64), and we can write

7−r
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1(j2 − 1)(j − 1)
(j − 2)!

(j − r)!

≡
7−r
∑

k=0

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(−1)k+r−(2l+1)

(

k + r

2l + 1

)

(2l + 1)n+1((2l + 1)2 − 1)× 2l

(

(2l − 1)!

(2l + 1− r)!

)

≡ 16
7−r
∑

k=0

(−1)k+r−1

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(

k + r

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

l

(

(2l − 1)!

(2l + 1− r)!

)

(mod 64).

By computation we see that the recent summation is divisible by 4, for 2 ≤ n ≤ 33. So the
proof for 3 ≤ r ≤ 7 is completed.

If r ≥ 8, since 64 | 8!, then 64 | (k + r)!, and

Fn+2,r − Fn,r =
n+2
∑

k=0

(k + r)!

{

n+ 2 + r

k + r

}

r

−

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

≡ 0 (mod 64),

so ω(Ar,26) = 2, for r ≥ 8, and the proof is completed.

Theorem 9. If m ≥ 7, after the (m−1)th term, the sequence Ar,2m has a period with length

ω(Ar,2m) = 2m−6.

Proof. The proof of this theorem is similar to the proof of Theorem 6. In the case of

11



n ≥ 2m − r − 1 and r ≥ 8 we have

Fn+2m−6,r − Fn,r =
n+2m−6

∑

k=0

(k + r)!

{

n+ 2m−6 + r

k + r

}

r

−

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

≡
2m−r−1
∑

k=0

(k + r)!

({

n+ 2m−6 + r

k + r

}

r

−

{

n+ r

k + r

}

r

)

≡
2m−r−1
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1(j2
m−6

− 1)

(

(j − 1)!

(j − r)!

)

(mod 2m).

In the case of 2m > r > 2m −m, since m ≥ 7 this implies that r > 2m −m ≥ 2m−1, so

2m | (2m−1)! | (k + r)!, for each k ≥ 0.

Therefore both summations in the above first equation are zero modulo 2m and in this
case ω(Ar,2m) = 2m−6. When r ≤ 2m − m, if j is even then jn+1 = (2c)2

m−r+h, for some
h ≥ 0. So 2m | jn+1. For odd j we have (j, 2m−5) = 1, and 2m−5 | j2

m−6

− 1 by Euler’s

theorem. Since r ≥ 8 we can write (j−1)!
(j−r)!

=
(

(j−8)!
(j−r)!

)

∏7
i=1(j − i). Therefore 32 | (j−1)!

(j−r)!
and

2m | (j2
m−6

− 1)
(

(j−1)!
(j−r)!

)

.

In the case of m− 1 ≤ n < 2m − r − 1 and r ≥ 8 we have

Fn+2m−6,r − Fn,r =
n+2m−6

∑

k=0

(k + r)!

{

n+ 2m−6 + r

k + r

}

r

−

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

≡
2m−r−1
∑

k=0

(k + r)!

({

n+ 2m−6 + r

k + r

}

r

−

{

n+ r

k + r

}

r

)

−
2m−r−1
∑

k=n+2m−6+1

(k + r)!

{

n+ 2m−6 + r

k + r

}

+
2m−r−1
∑

k=n+1

(k + r)!

{

n+ r

k + r

}

(mod 2m)

=
2m−r−1
∑

k=0

(k + r)!

({

n+ 2m−6 + r

k + r

}

r

−

{

n+ r

k + r

}

r

)

+ 0,

and the proof proceeds as in the previous case. In the case of 3 ≤ r ≤ 7 one can deduce
similarly to the proof of Theorem 6 that

Fn+2m−6,r − Fn,r ≡
2m−r−1
∑

k=0

k+r
∑

j=r

(−1)k+r−j

(

k + r

j

)

jn+1(j2
m−6

− 1)

(

(j − 1)!

(j − r)!

)

(mod 2m).

Exactly the same as Theorem 6, the terms with even j vanish and only the terms with odd
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j remain. So we have

Fn+2m−6,r − Fn,r ≡

2m−r−1
∑

k=0

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(−1)k+r−(2l+1)

(

k + r

2l + 1

)

(2l + 1)n+1((2l + 1)2
m−6

− 1)

×

(

((2l + 1)− 1)!

((2l + 1)− r)!

)

≡ 2m−5

2m−r−1
∑

k=0

(−1)k+r−1

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(

k + r

2l + 1

)

(2l + 1)n+1

×

(

2m−6

∑

i=1

li2i−1

(

(2m−6 − 1)!

i!(2m−6 − i)!

)

)

(

(2l)!

(2l − r + 1)!

)

(mod 2m).

Since gcd(2l + 1, 16) = 1, Euler’s theorem shows that (2l + 1)n+1+8 ≡ (2l + 1)n+1 (mod 16).
If m ≥ 10, we have

Fn+2m−6,r − Fn,r ≡ 2m−4

2m−r−1
∑

k=0

(−1)k+r−1

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(

k + r

2l + 1

)

(2l + 1)n+1

(

l(l + 1)

2

)

× (−2l2 − 2l + 1)

(

(2l)!

(2l − r + 1)!

)

(mod 2m).

Therefore it is sufficient to compute the above summation (without factor 2m−4) for 3 ≤ r ≤ 7
and 9 ≤ n ≤ 16 to show that it is divisible by 16.

For 7 ≤ m ≤ 9 we evaluate the sum

2m−r−1
∑

k=0

(−1)k+r−1

⌊(k+r−1)/2⌋
∑

l=⌊r/2⌋

(

k + r

2l + 1

)

(2l + 1)n+1

2m−6

∑

i=1

li2i−1 (2m−6 − 1)!

i!(2m−6 − i)!

(

(2l)!

(2l − r + 1)!

)

form−1 ≤ n ≤ m+6 to show that it is divisible by 32. Then it follows that ω(Ar,2m) = 2m−6,
for all m ≥ 7.

5 The conclusion

We now state the final theorem, which shows how to compute ω(Ar,s) for any s ∈ N.

Theorem 10. Let s ∈ N and s > 1 with the prime factorization s = 2mpm1

1 pm2

2 · · · pmk

k and

let D = {pmi

i | pmi

i > r, 1 ≤ i ≤ k}. Define E = {mi−1 | pmi

i ∈ D}, F = {ϕ(pmi

i ) | pmi

i ∈ D}
and a = max(E ∪ {m− 1}) and let b be the least common multiple (lcm) of the elements of

F . Then

ω(Ar,s) =











b, if 0 ≤ m ≤ 2 or 2m ≤ r;

lcm(2, b), if 3 ≤ m ≤ 6 and 2m > r ;

lcm(2m−6, b), if m ≥ 7 and 2m > r,

(16)
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and periodicity of the sequence Ar,s is seen after the a-th term.

Proof. Let l be the right hand side of (16). For each d ∈ D ∪ {2m}, ω(Ar,d) | l and for each
p
mj

j 6∈ D such that 1 ≤ j ≤ k, we have 1 = ω(A
r,p

mj
j

) | l, so

Fn+l,r ≡ Fn,r (mod 2m)

Fn+l,r ≡ Fn,r (mod pmi

i ), for i = 1, 2, . . . , k.

Since gcd(2m, pm1

1 , pm2

2 , . . . , pmk

k ) = 1, the multiplication of all above congruence relations
gives the required result.
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A Proof of Lemma 5

After simplifying the lemma’s relation we have

2i−5
(

2m−6−1
i

)

2m−6 − i
=

2i−5(2m−6 − 1)(2m−6 − 2) · · · (2m−6 − i+ 1)

i!
. (17)

It is sufficient to show that the right hand side of (17) is integer. We know that
(

2m−6

i

)

∈ N,
i.e.,

i! | 2m−6(2m−6 − 1) · · · (2m−6 − i+ 1).

If Oi denotes the product of the odd factors of i!, since (Oi, 2
m−6) = 1, then Oi | (2

m−6 −
1) · · · (2m−6 − i+ 1). So in (17) we only need to prove that

ν2(2
i−5(2m−6 − 1)(2m−6 − 2) · · · (2m−6 − i+ 1)) ≥ ν2(i!),

where by ν2(x) we mean that 2ν2(x) | x, but 2ν2(x)+1 ∤ x. Let A = ν2((2
m−6 − 1)(2m−6 −

2) · · · (2m−6− i+1)) and B = ν2(i!). Let e be the unique integer such that 2e ≤ i < 2e+1. So

A =
e
∑

k=1

⌊
i− 1

2k
⌋, B =

e
∑

k=1

⌊
i

2k
⌋. (18)

If we show that

B − A ≤ e (19)
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then the lemma is concluded if it is proved that

i+ A ≥ B + 5. (20)

It can easily be shown that B = ν2(i!) and A = ν2((i − 1)!), so B − A = ν2(i). Since
2e ≤ i < 2e+1, therefore ν2(i) ≤ e and (19) follows. For e = 2, integer possibilities for
inequality (20) are as follows:

i A B

5 3 3
6 3 4
7 4 4

For e ≥ 3 one can deduce by simple induction that

2e ≥ e+ 5,

so i ≥ 2e ≥ e+ 5. Add B − e to these inequalities and use (19) demonstrates (20) for i ≥ 8.
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